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Abstract. Artificial neural networks are being proposed for automated
decision making under uncertainty in many visionary contexts, includ-
ing high-stake tasks such as navigating autonomous cars through dense
traffic. Against this background, it is imperative that the decision mak-
ing entities meet central societal desiderata regarding dependability, per-
spicuity, explainability, and robustness. Decision making problems under
uncertainty are typically captured formally as variations of Markov deci-
sion processes (MDPs). This paper discusses a set of natural and easy-to-
control abstractions, based on the Racetrack benchmarks and extensions
thereof, that altogether connect the autonomous driving challenge to
the modelling world of MDPs. This is then used to study the depend-
ability and robustness of NN-based decision entities, which in turn are
based on state-of-the-art NN learning techniques. We argue that this
approach can be regarded as providing laboratory conditions for a sys-
tematic, structured and extensible comparative analysis of NN behavior,
of NN learning performance, as well as of NN verification and analysis
techniques.

1 Introduction

The field of automated driving – especially in its fully automated form, often re-
ferred to as autonomous driving – is considered a grand and worthwhile challenge
to tackle. In light of the importance and safety criticality of the application, it is
imperative that the core technical components meet societal desiderata regarding
dependability, perspicuity, explainability, and trust. The process of automated
driving can be broken down into three stages [22]. The first stage deals with
machine perception based on the sensor data collected, followed by a stage on
? Authors are listed alphabetically. This work was partially supported by the Ger-
man Research Foundation (DFG) under grant No. 389792660, as part of TRR 248,
see https://perspicuous-computing.science, by the ERC Advanced Investigators
Grant 695614 (POWVER), and by the Key-Area Research and Development Pro-
gram Grant 2018B010107004 of Guangdong Province.

https://perspicuous-computing.science


2 Christel Baier et al.

intention recognition, behavior prediction and risk assessment. The last stage is
about risk-aware behavioral decisions, the planning of the trajectory to be driven
and the effectuation and control of the resulting behavior. Many areas of com-
puter science are in demand here: machine learning, numerics, cyber-physical
systems and, last but not least, verification and validation. Across all the three
stages, artificial neural networks are being experimented with, and tremendous
progress is being reported especially in areas relating to the first and second
stage [8,2,4,21,19,24,20].

In formal terms, the interface between the second and third stage can be
viewed as a (albeit dauntingly large) Markov decision process (MDP) [18] spanned
by a multitude of continuous and discrete dimensions, in which probability anno-
tations reflect the outcomes of risk assessments carried out before. Of course, it
is practically infeasible to capture all the precise details of a real vehicle navigat-
ing through dense traffic in a single MDP model, and thus it is common practice
to instead work on more abstract representations. Typical abstractions are (i)
discretization of the continuity of time, space, speed, acceleration and the like,
(ii) linearization of non-linearities, and (iii) abstraction from irrelevant details
(such as the temperature of the fuel in the vehicle tank) – all that in order to
arrive at a model of feasible size. The quality of the abstraction process and the
properties of the resulting model are major components in the overall trust we
can place on the resulting decision making entity.

In this realm, this paper reports on orchestrated ongoing efforts that aim at
systematizing research on (i) the process of abstraction and concretization, and
(ii) reproducibility and explainability of decision making entities for automated
driving based on neural networks. In a nutshell, we consider the third stage of
the automated driving challenge in which a neural network takes the task of risk-
aware maneuvering of the vehicle, but in a two-dimensional grid world consisting
of blocked and free grid cells, which are observable in full from a bird’s-eye view,
i. e., without ego-perspective. Furthermore, in a first step, we do not consider
moving obstacles, weather or road conditions and resource consumption.

What results after all these abstractions is the problem of navigating a vehicle
on a gridded 2D-track from start to goal, as instructed by a neural network and
subject to probabilistic disturbances of the vehicle control. This problem family,
known as the Racetrack [3] in the AI community is arguably very far away from
the true challenges of automated driving, but (i) it provides a common formal
ground for basic studies on NN behavioral properties (as we will highlight below),
(ii) it is easily scalable, (iii) it is extensible in a natural manner, namely by undo-
ing some of the abstractions listed above (which we are doing already), and (iv)
it is made available to the scientific community together with a collection of sup-
porting tools. These four properties are at the core of what we want to advocate
with this paper, namely a bottom-up approach to explainability in autonomous
driving, providing laboratory conditions for a systematic, structured and extensi-
ble analysis. In what follows, we provide a survey of orchestrated ongoing efforts
that revolve around the Racetrack case. All infrastructure, documentation, tools,
and examples covered in this paper or otherwise related to Racetrack are made
available at https://racetrack.perspicuous-computing.science.
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2 Racetrack Lab Environment

This section gives a brief overview of the basic model considered and then reviews
ongoing work relating to it. The Racetrack evolved from a pen and paper game
[10] and is a well known benchmark in AI autonomous decision making contexts
[3,17,16,14,5]. In Racetrack, a vehicle needs to drive on a 2D-track (grey) from
start cells (green) to goal cells (blue), the track being delimited by walls (red)
as depicted in Fig. 1. The vehicle can change acceleration in unit steps in nine
directions spanned by the x- and y-dimensions [−1, 0, 1].

Fig. 1. A Racetrack [3].

The natural abstraction of the autonomous driv-
ing challenge in this simplified setting is the task of
finding a policy that manages to reach the goal with a
probability as high as possible and crashes as rarely as
possible. Probabilities enter the picture by imperfect
acceleration modelling slippery road conditions.

We use Racetrack as our lab environment to study
various aspects of machine-learnt entities that are sup-
posed to solve the task. These aspects include quanti-
tative evaluations of effectiveness, safety, quality, ex-
plainability and verifiability. We will review our work in the remainder of this
section. The overarching assumption is that a neural network has been trained
by state-of-the-art machine learning techniques for the very purpose of navi-
gating the map as well as possible, and is then put into our lab environment.
Beyond that, we also briefly discuss how the lab can be inserted into the machine
learning pipeline for the purpose of better learning performance.

2.1 Deep Statistical Model Checking
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Fig. 2. Effect of expected (left) and more slippery
(right) road conditions [12].

To enable a deep inspection
of the behavior induced by
a neural network we devel-
oped an evaluation method-
ology called Deep Statistical
Model Checking (DSMC) [12].
Concretely, we considered the
default Racetrack use case in
which the neural network has
been trained on the task of
reaching the goal with a probability as high as possible while crashing as rarely
as possible. After training, the NN represents a policy taking the crucial steering
decisions when driving on the map. This policy can be considered as determinizer
of the MDP modelling the Racetrack. For the resulting stochastic process, we
harvested state-of-the-art statistical model checking [6,23] techniques to study
the detailed behavior of the net. More concretely, we treat the NN as a black
box to resolve the nondeterminism in the given MDP of the model. The NN gets
a description of the current state and returns the action to apply next. The sta-
tistical analysis of the resulting Markov chain and thereby of the NN properties
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Fig. 3. TraceVis in action [11].

gives insights in the quality of the NN, not only for the whole task but also for
specific regions of the Racetrack.

An impression is given in Fig. 2, where simple heat maps visualize the chance
to safely reach the goal if starting in each of the cells along the track. On the
left, the lab model agrees exactly with the model used for training the net, while
on the right, it is used in a lab model with a drastically increased probability for
the acceleration decision to not take effect (modelling a far more slippery road).

This brief example demonstrates how DSMC enables the inspection of risky
driving behavior induced by the NN. Such information can be used to retrain the
net in a certain area of the map to improve quality or to see if the net prefers
a specific route over an equivalent one. In a nutshell, DSMC provides a scal-
able verification method of NNs. For small case instances, standard probabilistic
model checking can be used, too, for instance to compare the NN behavior with
the provably optimal policy, see for more details [12].

2.2 Trajectory Visualization of NN-Induced Behavior

TraceVis [11] is a visualization tool tailored to evaluations in Racetrack-like 2D
environments, exploiting advanced 3D visualization technology for data repre-
sentation and interactive evaluation. In a nutshell, trajectories are mapped to
tubes that can be optionally bent to arcs in order to show the discrete nature
of stepping, probabilistic information is mapped to a bar chart embedded in the
Racetrack or to color, and time can be mapped to a height offset or animation
along exploration steps. To reduce visual clutter, segments are aggregated and
whole trajectories are clustered by outcome, i.e., final goal or crash position.
TraceVis offers multiple views for different inspection purposes, including (i) in-
teractive context visualization of the probabilities induced, (ii) visualization of
the velocity distribution aggregated from all trajectories, with the possibility to
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animate particular aspects as a function of time, and (iii) convenient support for
hierarchical navigation through the available clusters of information in an intu-
itive manner, while still allowing views on individual trajectories. An impression
of the UI of the TraceVis tool can be found in Fig. 3.

These interactive visualization techniques provide rich support for a detailed
inspection of the data space, for the purpose of investigating, for instance, which
map positions come with a considerable crash risk, or for what crashes the dom-
inating reason is a bad policy decision taken by the controlling NN, relative to
the scenario-intrinsic noise. With these overarching functionalities TraceVis of-
fers support for analyzing and verifying neural networks’ behavior for quality
assurance and learning pipeline assessment in a more detailed and informative
way than the raw data and simple heat maps provided in the DSMC work [12].

TraceVis is implemented as a plugin for the CGV-Framework [13], and as
such, it is easily extensible to support other dimensions of the autonomous driv-
ing challenge.

2.3 Safety Verification for NNs in the Loop
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Fig. 4. Effect of training quality on
verifiability, for a moderately trained
(left) and a well trained (right) NN [7].

State-of-the-art program analyses are not
yet able to effectively verify safety prop-
erties of heterogeneous systems, that is,
of systems with components implemented
using different technologies. This short-
coming becomes especially apparent in
programs invoking neural networks – de-
spite their acclaimed role as innovation
drivers across many application domains.

We have lately [7] embarked on the
verification of system-level safety properties for systems characterized by in-
teracting programs and neural networks. This has been carried out in the lab
environment of the Racetrack. The main difference to DSMC is that this work
does not consider the net in isolation, but instead takes into consideration the
controller program querying the net. Our technique, which is based on abstract
interpretation, tightly integrates a program and a neural-network analysis that
communicate with each other. For the example case considered, we have for in-
stance studied the dependency between the quality of the NN and the possibility
to verify its safety, as illustrated in Fig. 4, where a green cell indicates that it
is verifiable that a goal is eventually reached, and red encodes that no property
can be verified.

With this work, we address the growing number of heterogeneous software
systems and the critical challenge this poses for existing program analyses. Our
approach to verifying safety properties of heterogeneous systems symbiotically
combines existing program and neural-network analysis techniques. As a result,
we are able to effectively prove non-trivial system properties of programs that
invoke neural networks.
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3 Discussion: Racetrack in the Wild

This paper has discussed several works concentrating on the most basic version
of Racetrack. They are supported by a joint software infrastructure, aspects of
which are presented in more detail in individual papers. The entirety of the tool
infrastructure is available at https://racetrack.perspicuous-computing.science.
This web portal presents example tracks to generate Racetrack benchmarks of
different sizes and levels of difficulty. Furthermore, it provides demonstrations
and explanations how to use the tool infrastructure to

– generate Racetrack versions with different features
– train neural networks on a Racetrack
– perform automated safety verification on a Racetrack
– perform deep statistical model checking on a Racetrack
– explore the resulting behavior with TraceVis.

Beyond this benchmarking infrastructure, what we advocate is a bottom-up ap-
proach to autonomous driving (and potentially to other high-stake sequential
decision making problems in a similar manner), starting with Racetrack and
working upwards to more realism. This endeavor essentially consists in undoing
the simplifications inherent in the Racetrack benchmark: (i) consideration of re-
source consumption, (ii) varying road/weather conditions, (iii) moving obstacles,
i.e., traffic, (iv) fine discretization, (v) continuous dynamics, (vi) ego-perspec-
tive, and (vii) incomplete information. Racetrack can readily be extended with
all of these aspects, slowly moving towards a lab environment that encompasses
more of the real automated driving challenge. We advocate this as a research
road map.

At this point, we are already busy with activities (i) – (iii) of the road map.
The basic Racetrack scenario has been extended with different road conditions
(tarmac, sand and ice), different engine types that influence maximal speed and
acceleration, as well as with tanks of different size, such that the fuel consump-
tion has to be taken into account while driving. Racetrack variants with all these
features have been considered in a feature-oriented evaluation study, combined
with a hierarchy of different notions of suitability [1]. We are furthermore devel-
oping a Lanechange use case, which adds traffic and comes with a switch from
a full-observer view, like in Racetrack, to the ego-perspective, where the vehicle
has in its view only a certain area to the front, the sides and back. The vehicle
here drives on a road with multiple lanes and other traffic participants that move
with different speeds in the same direction [15,9]. The aim is to navigate the road
effectively, changing lanes to overtake slow traffic, while avoiding accidents. We
have developed initial test-case generation methods, adapting fuzzing methods
to identify MDP states (traffic situations) that are themselves safe, but on which
the neural network policy leads to unsafe behavior.

Overall, we believe that Racetrack, while in itself a toy example, can form the
basis of a workable research agenda towards dependability, perspicuity, explain-
ability and robustness of neural networks in autonomous driving. We hope that
the infrastructure and research agenda we provide will be useful for AI research
in this direction.

https://racetrack.perspicuous-computing.science
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