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Abstract

Reinforcement learning is becoming ever more prominent
in solving combinatorial search problems, in particular ones
where states are images. Prior work has devised action-
policy testing methodology, that identifies so-called bug
states where policy performance is sub-optimal. Here we
show how to leverage this methodology during the RL pro-
cess, using action-policy testing to find bugs and injecting
those as alternate start states for the training runs. Running
experiments across six 2D games, we find that our testing-
guided training often achieves similar expected reward while
reducing the number of bugs.

Introduction
In the context of decision-making, an action policy refers to
a mapping between states and actions. Given a state (which
is an abstraction of an environment), a policy outputs an
action that is to be taken in that state. Recently, policies
represented by neural networks (NNs) have drawn increas-
ing attention in problems involving decision-making, e.g., in
games (Mnih et al. 2015; Silver et al. 2016, 2018) and in au-
tomated planning tasks (Issakkimuthu, Fern, and Tadepalli
2018; Groshev et al. 2018; Garg, Bajpai, and Mausam 2019;
Toyer et al. 2020; Karia and Srivastava 2021; Ståhlberg,
Bonet, and Geffner 2022a,b; Wang and Thiébaux 2024).

One important aspect of a policy we are usually concerned
with is whether it behaves wrongly in some states. For in-
stance, in the scenario of autonomous driving, an incorrect
behavior of a policy in a state may lead to a crash. In general,
we call such a state a bug state.

Existing literature uses testing to identify bug states, see,
e.g., the work by Dreossi et al. (2015), Akazaki et al. (2018),
and Koren et al. (2018). For an overview, we refer to the
work by Corso et al. (2021). This line of work focuses on
the safety of a policy, that is, it is concerned with bug states
where policies’ incorrect behaviors cause unsafe situations.

We consider bug states in a more general sense. In this pa-
per, we regard a state where a policy performs sub-optimally
as a bug state. We leverage the π-fuzz testing framework
(Eniser et al. 2022) to identify such bug states and propose
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an approach fusing Deep Reinforcement Learning training
with testing to improve a policy’s performance on bug states.

Our contribution is twofold. First, we introduce a variant
of the test oracle in π-fuzz, which identifies bug states where
a policy performs sub-optimally. Second, we propose an ap-
proach incorporating testing into Reinforcement Learning
training which injects bug states found by testing into train-
ing runs as start states.

We evaluate our approach on 6 domains (environments),
ranging from 2D games to simplified autonomous driving
scenarios. The experimental results show that our approach
can reduce the number of bug states while still maintaining
similar policy performance compared with standard training.

Background
We consider Markov Decision Processes (MDPs) as the un-
derlying decision-making framework, on which Reinforce-
ment Learning approaches are deployed.

A MDP M is a tuple (S,A, T ,R,PI , γ). S is a set of
states. A is a set of actions. Both S and A can be infinite.
T : S×A → D(S) is a function whereD(S) is the set of all
probability distributions over S. Intuitively, T captures how
applying an action in a state can change that state to another.
For instance, suppose that T (s, a) = P where P ∈ D(S)
is a probability distribution over S, then P(s′) with s′ ∈ S
defines the probability of obtaining the state s′ by applying
the action a in s. R : S × A → R is a function defining
the reward that can be obtained by applying an action in a
state. PI is a probability distribution over S which defines
the probability of a state being the initial state. γ with 0 <
γ < 1 is called a decay factor.

A policy for a MDP is a function π : S → A deciding
which action should be taken for each state. A policy π in-
duces a state-action trace τ = ⟨s0 a0 s1 a1 s2 a2 · · ·⟩ where
s0 is the initial state with PI(s0) > 0, and for each t ≥ 0,
at = π(st), and Pt+1(st+1) > 0 with T (st, at) = Pt+1

(i.e., the action at changes the state st to st+1). A state-
action trace is also called an episode. The total reward r(τ)
associated with an episode τ is r(τ) =

∑∞
t=0 γ

tR(st, at)
where γ is the decay factor. The presence of γ ensures that
r(τ) will converge to a real number despite that τ is infinite.

Since applying an action in a state could result in differ-



ent next states, a policy π may induce different state-action
traces. Therefore, we are more interested in the average re-
ward over all possible state-action traces governed by a pol-
icy π, i.e., Eτ∼πJr(τ)K. For convenience, we call this the
expected reward of π. For an MDP, we want to find a policy
whose expected reward is as high as possible.

One way to find such a policy is by Reinforcement Learn-
ing (RL), especially Deep Reinforcement Learning (DRL),
which has drawn increasing attention in the last decade. We
briefly present the general workflow of DRL here and omit
the details, because we could basically view the training and
optimization process of DRL as a black box in this paper.

DRL starts with randomly initializing a policy π. The pol-
icy π is then updated iteratively. In each iteration, a state-
action trace τ is first generated (i.e., sampled) according to
the current π. After that, π is optimized (i.e., updated) based
on the total reward of τ (and potentially on the total rewards
of the state-action traces generated in previous iterations, de-
pending on different variants of DRL approaches). The train-
ing stops when the number of iterations reaches the limit.

Next we present the π-fuzz testing framework proposed
by Eniser et al. (2022), which is used to identify bug states
for policies. Formally speaking, we can define a bug state as
follows: Let π be a policy, S a set of states, and P a desirable
property pertaining to π and states in S (e.g. P could state
that π does not crash into an obstacle). A state s ∈ S is a bug
state for π if P can be made true in s but is not true under
π. For identifying bug states, the hard part is how to decide
whether P can be made true in s, because that in general
necessitates optimal planning.

The π-fuzz testing framework addresses this issue by ex-
ploiting the notion of state relaxations. For two states s′ and
s, we say that s′ relaxes s if s′ is easier to solve than s, in the
sense that any solution for s also works for s′. State relax-
ations provide a means for identifying bug states because,
for the properties P we are interested in, if P is true in s
then it must also be true in s′; and therefore, if under π P
is true in s but is not true in s′, then s′ is a bug state. Eniser
et al. (2022) exploited state relaxations to identify bug states
related to safety. In their context, a state s′ is a bug in π if
running π on s′ enters a state that satisfies a failure condition
ϕ, even though this could be avoided. Their oracle checks
whether for a pair of state s and relaxed state s′, π enters a
failed state on s′ but not on s, in which case s′ is a bug.

The π-fuzz framework consists of two components: a
fuzzer and a test oracle. The fuzzer generates a pool of pairs
(s′, s) of states where s′ relaxes s. The test oracle then runs
π on all state pairs in the pool, checking whether s′ can be
proved to be a bug as described above.

Testing Methods
In this paper, we adapt the π-fuzz framework to deal with
bug states in a slightly more general sense. Along the lines
of policy testing work in classical planning (Steinmetz et al.
2022; Eisenhut et al. 2023, 2024) we say that a state s′ is a
bug state for a policy π if π performs sub-optimally in s′.
In our case, this means that the expected reward of π on s′

could be higher. Like Eniser et al. (2022), we exploit state
relaxations to identify such bug states. Concretely, for any

Algorithm 1 The procedure of Testing-Guided training.
1: π ← randomly initialized policy
2: f ← test frequency
3: ▷ C is a multi-set
4: p∗ ← 0, C ← ∅, D ← FUZZER()
5: for i = 1, . . . , L do ▷ training iterations
6: ▷ testing with the frequency f
7: if i % (L× f) = 0 then
8: C ← C ∪ TESTORACLE(π,D)
9: if BERNOULLI(p∗) = 1 then

10: τ ← SAMPLETRACE(π, s0 ∈ C)
11: else τ ← SAMPLETRACE(π, s0 ∼ PI)
12: ▷ standard RL optimization using back propagation
13: π ← UPDATEPOLICY(τ)
14: ▷ p∗ is updated on-the-fly
15: p∗ ← UPDATEPROBABILITY(π)
16: return π

two states s′ and s, if s′ relaxes s then the expected reward
of π on s′ should be at least as good as that on s, i.e.,

Eτ∼πJr(τ)|s0 = s′K ≥ Eτ∼πJr(τ)|s0 = sK (1)

If s′ relaxes s and Ieq. 1 does not hold, then s′ is a bug state.

Fuzzer We could directly adopt the implementation of the
fuzzer by Eniser et al. (2022) for the purpose of generating
a pool of pairs (s′, s) of states where s′ relaxes s.

Test Oracle Given two states s′ and s with s′ being a re-
laxed state of s and a policy π, our test oracle shall be able to
check whether Inequality 1 holds. One problem here is that
it is practically infeasible to compute the expected reward of
π on s′ (and on s). To address this issue, we run the policy N
times on both s and s′ where N is a number decided by us.
We use τi and τ ′i to denote the ith state-action trace obtained
by running π on s and s′, respectively. If r(τ ′i) < r(τi) for
all 1 ≤ i ≤ N , then we regard s′ as a bug state.

Testing-Guided RL
The presented testing method identifies bug states for a pol-
icy, which, in our context, are states where the policy per-
forms sub-optimally. We further want to improve the perfor-
mance of the policy on these bug states.

Recall that in a DRL training process, a policy is updated
(i.e., its performance is improved) by sampling state-action
traces whose start states follow the initial state distribution.
Hence, the performance of a policy on bug states can be im-
proved by sampling state-action traces whose start states are
drawn from those bug states. A similar idea has been ex-
ploited before to improve the safety of a policy through tar-
geted selection of start states (Gros et al. 2023, 2024).

More concretely, during DRL training, when a new state-
action trace is going to be sampled, we could set a probabil-
ity to control whether the initial state of this trace is drawn
from the initial state distribution or from bug states. This set-
ting thus ensures that the start states of the state-action traces
sampled for training alternate between normal initial states
and bug states, improving the policy’s performance on both
types of states simultaneously.



Figure 1: Distributions of number of bug states within reward intervals, for the tested policies in 5 runs of training as per Alg. 1.

The realization of this idea is shown in Alg. 1. We first use
the fuzzer to generate a pool D of state pairs (s′, s) before
training begins where s′ relaxes s from which bug states are
identified. During training, we perform testing (using the test
oracle) with a certain frequency. The bug states returned in
every test are added to a collection C, which is initialized to
an empty set. When a new state-action trace is going to be
sampled (for updating the policy), the start state of this trace
is either drawn according to the initial state distribution or
from the collection C of bug states (if C is not empty).

Performing testing with a certain frequency during train-
ing is to keep track of newly appeared bug states. Along with
the process of updating the policy, a state in the pool which
was not a bug state may become one. Furthermore, we want
to emphasize that the collection C is a multi-set, that is, a bug
state could appear multiple times in C. In particular, if a state
indeed appears multiple times in C, i.e., it is identified as a
bug state in multiple rounds of test, then it has higher chance
of being drawn as the start state of a state-action trace.

The last important aspect of our approach is that, the prob-
ability that decides whether the start state of a trace is drawn
from C or according to PI is computed on-the-fly. The rea-
son for this is that, intuitively speaking, if this probability is
too high, the training process would focus too much on im-
proving the performance of the policy on bug states, which
could cause a decrease in the performance on ordinary ini-
tial states. Generally speaking, this probability is computed
according to the total rewards of state-action traces sampled
according to the current policy. We want the probability to
be slightly high if the total rewards of those sampled traces
do not change too much.

This change rate of rewards can be captured numerically.
Let’s say, wlog., we consider the rewards r1, · · · , rk of k
traces. We first normalize every reward by letting r̂i = ri/M
where M = max {ri | 1 ≤ i ≤ k} is the maximal reward.
The purpose of this step is just to make the latter step of com-

puting the probability p∗ easier. For each 1 ≤ i ≤ k, we de-
fine ∆i = |r̂i+1 − r̂i|, which captures how much the reward
changes between two consecutively sampled sequences. We
can compute the average change rate of those rewards as:

∆ =
1

k − 1

k−1∑
i=1

∆i

The probability p∗ can then be obtained accordingly: p∗ =
α(1−∆) where 0 ≤ α ≤ 1 is a parameter decided by us. If
the rewards of those traces change sharply, ∆ would then be
large, reducing the probability p∗. Conversely, if that is not
the case, then ∆ would be small, increasing p∗.

Experiments
We evaluated our approach on 6 domains, ranging from 2D
games to simplified autonomous driving scenarios. The pri-
mary objective of our experiments is to evaluate whether our
approach can reduce the number of bug states for a policy.

To this end, we ran a standard RL training approach (we
ran PPO (Schulman et al. 2017) on all domains except for
Go To Object on which we used DQN (Mnih et al. 2013))
and our testing-guided training approach on each domain.
We set the test frequency to 0.02 in our approach. For both
training approaches, we ran 5 trials. The reason for running
multiple trials is to reduce the inherent noise during training.
For each test, we record the number of bug states found and
the expected reward of the corresponding policy. We set α =
0.5 in all domains, except in Go To Object where α = 0.35
as larger values could lead to a reduction in the rewards of
policies on ordinary initial states.

Fig. 1 shows violin plots for the distribution of the number
of bug states in the policies tested by Alg. 1 during training.
We group the policies by their reward performance, which
we bin into given intervals (the number of policies in each
bin is shown in Fig. 2). We show intervals for reasonably



Figure 2: Number of policies within each reward-interval bin underlying Fig. 1.

well-performing polices only, as low-performance policies
are not of interest. In what follows, for each domain we give
an outline and summarize our results.

Go To Object is a Minigrid (Chevalier-Boisvert et al.
2023) domain. We generated a pool with 500 state pairs.
The results are modestly positive, with a mixed picture for
lower-reward policies but advantages for guided training in
the two topmost intervals. Lunar Lander is a Gymnasium
(Towers et al. 2024) domain. We generated a pool with 1000
state pairs. The results are very positive, with guided training
reducing the number of bug states across all intervals. Dy-
namic Obstacle is again a Minigrid domain. The pool con-
sists of 500 state pairs. The results are modestly positive,
with the mean values for guided training being slightly be-
low those for standard training, consistently across intervals.

Intersection simulates a simplified autonomous driving
(Leurent 2018) scenario. We generated a pool with 500 state
pairs. The results for guided training are mixed here, with
good bug reductions in the intervals from 4.5 to 5 and mild
bug reduction in the top interval, but increased bugs in the in-
terval 5 – 5.5. Bipedal is again from Gymnasium. We gener-
ated a pool with 1000 state pairs. Our results for this domain
are mixed. Guided training can effectively reduce the num-
ber of bug states for policies with rewards ranging from 230
to 250, but for the other intervals the bug distributions are
similar for guided vs. standard training. One reason for this
may be the continuous action space of Bipedal, in difference
to the discrete actions in all other domains here. Highway
simulates another simplified autonomous driving scenario
(Leurent 2018). We generated a pool with 1000 state pairs.
The results here are clearly positive, with substantial advan-
tages for guided training across intervals. Overall, across our
6 domains we get two clearly positive results, two mildly
positive results, and two mixed/inconclusive results.

Fig. 2 complements the above with information about
the number of test points within each reward interval. This

serves the following two purposes:
1) It shows the sample size for the distributions in Fig. 1.

Most sample sizes are reasonable.
2) It serves to assess policy performance on initial states.
In general, the more the weight of the bars in a domain is on
the right-hand side, the more frequently does the RL process
generate high-reward policies. Guided training somewhat re-
duces the frequency of high-reward policies, but only mildly
so, and top-performance policies are always generated.

Discussion We hypothesize that the main factors which af-
fect the performance of our approach are 1) the complexity
of domains, 2) the inherent instability of DRL algorithms,
3) the number of bug states found, and 4) the hyperparame-
ters of DRL algorithms. For a hard domain (like Bipedal),
DRL algorithms are more likely being unstable. Guided-
training is sensitive to unstable training because the policy
would quickly forget how to solve the task from the initial
states once it is trained on bug states. Hence, it basically
keeps going back and forth without actually getting better. It
is also a problem if a domain has only few bug states, e.g.,
Go To Object, as it could cause training overfitting to those
bugs. This is also the reason why we use a small α-value for
this domain. Higher α-value for domains with few bug states
could easily result in overfitting.

Conclusion
We studied how to incorporate policy testing into RL train-
ing, with the objective to reduce the number of bug states
while maintaining competitive policy performance. Our em-
pirical evaluation across several RL benchmark domains
shows that our approach can achieve that objective, though
the extent to which that is the case depends on the domain.
We believe that the incorporation of policy testing, and other
policy analysis results, into (re)training is an important di-
rection that merits further attention, with the ultimate aim of
a feedback loop leading to better and better policies.
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