
Synthesizing Parameterized Unit Tests
to Detect Object Invariant Violations

Maria Christakis, Peter Müller, and Valentin Wüstholz

Department of Computer Science,
ETH Zurich, Switzerland

{maria.christakis,peter.mueller,valentin.wuestholz}@inf.ethz.ch

Abstract. Automatic test case generation techniques rely on a descrip-
tion of the input data that the unit under test is intended to handle. For
heap data structures, such a description is typically expressed as some
form of object invariant. If a program may create structures that violate
the invariant, the test data generated using the invariant systematically
ignores possible inputs and, thus, potentially misses bugs. In this paper,
we present a technique that detects violations of object invariants. We
describe three scenarios in which traditional invariant checking may miss
such violations. Based on templates that capture these scenarios, we syn-
thesize parameterized unit tests that are likely to violate invariants, and
use dynamic symbolic execution to generate inputs to the synthesized
tests. We have implemented our technique as an extension to Pex and
detected a significant number of invariant violations in real applications.

1 Introduction

Automatic test case generation techniques, such as random testing or symbolic
execution, rely on a description of the input data that the unit under test (UUT)
is intended to handle. Such a description acts as a filter for undesirable input
data. It is usually expressed as code in the test driver or as a method precondition
that specifies the valid arguments for the method under test. When the inputs
are heap data structures, some test case generators use predicates that express
which instances of a data structure are considered valid. In an object-oriented
setting, these predicates are often called class or object invariants.

Invariants may be provided by the programmer in the form of contracts,
such as in the random testing tool AutoTest [11] for Eiffel and in the dynamic
symbolic execution tool Pex [19] for .NET, or by the tester, like in the Korat [1]
tool for Java, which exhaustively enumerates data structures that satisfy a given
predicate up to a bound. Invariants may also be inferred by tools like the Daikon
invariant detector [4], which is used by the symbolic execution tool Symbolic Java
PathFinder [15] for obtaining input constraints on a UUT.

Using object invariants to generate test data requires the invariants to accurately
describe the data structures a program may create. When an invariant is too weak,
i.e., admits more data structures than the program may create, the test case gen-
erator may produce undesirable inputs, which are however easily detected when in-
specting failing tests. A more severe problem occurs when an invariant is too strong,

D. Giannakopoulou and G. Salaün (Eds.): SEFM 2014, LNCS 8702, pp. 65–80, 2014.
© Springer International Publishing Switzerland 2014



66 M. Christakis, P. Müller, and V. Wüstholz

i.e., admits only a subset of the data structures the program might actually create.
The test case generator may then not produce desirable inputs since they are filtered
out due to the overly strong invariant. Consequently, the UUT is executed with a
restricted set of inputs, which potentially fail to exercise certain execution paths
and may miss bugs. Too strong invariants occur, for instance, when programmers
specify invariants they intend to maintain but fail to do so due to a bug, when they
fail to capture all intended program behaviors in the invariant, or when invariants
are inferred from program runs that do not exercise all relevant paths. Therefore, it
is essential that invariants are not only used to filter test inputs but are also checked
as part of test oracles. However, checking object invariants is very difficult as shown
by work on program verification [3,12]. In particular, it is generally not sufficient
to check at the end of each method that the invariant of its receiver is maintained.
This traditional approach [10], which is for instance implemented in Pex and Au-
toTest, may miss invariant violations when programs use common idioms such as
direct field updates, inheritance, or aggregate structures (see Sect. 2).

To address this issue, we propose a technique for detecting previously missed
invariant violations by synthesizing parameterized unit tests (PUTs) [20] that
are likely to create broken objects, i.e., class instances that do not satisfy their
invariants. The synthesis is based on templates that capture the situations in
which traditional invariant checking is insufficient. We use dynamic symbolic
execution (DSE) [7], also called concolic testing [16], to find inputs to the syn-
thesized PUTs that actually violate an invariant.

Whenever our approach detects an invariant violation, the programmer has to
inspect the situation to decide which of the following three cases applies: (1) The
object invariant is stronger than intended. In this case, one should weaken the
invariant. (2) The invariant expresses the intended properties, but the program
does not maintain it. This case constitutes a bug that should be fixed. (3) The
invariant expresses the intended properties and can, in principle, be violated
by clients of the class, but the entire program does not exhibit such violations.
For instance, the class might provide a setter that violates an invariant when
called with a negative argument, but the program does not contain such a call.
In such cases, one should nevertheless adapt the implementation of the class to
make the invariant robust against violations for future program changes during
maintenance and for other clients of the class during code reuse.

The contributions of this paper are as follows:

- It identifies an important limitation of current test case generation approaches
in the treatment of object invariants. In particular, existing approaches that
use invariants as filters on input data do not sufficiently check them, if at all.

- It presents a technique that detects invariant violations by synthesizing PUTs
based on templates and exploring them via DSE.

- It demonstrates the effectiveness of this technique by implementing it as an
extension to Pex and using it on a suite of open source C# applications.

Outline. Sect. 2 illustrates the situations in which the traditional checks for
object invariants are insufficient. Sect. 3 gives an overview of our approach.



Synthesizing Parameterized Unit Tests to Detect Object Invariant Violations 67

Sect. 4 explains how we select the operations to be applied in a synthesized
test, and Sect. 5 describes the templates used for the synthesis. We discuss our
implementation in Sect. 6 and present the experimental evaluation in Sect. 7.
We review related work in Sect. 8 and conclude in Sect. 9.

2 Violating Object Invariants

1 public class Person {
2 Account account ;
3 public int salary ;
4
5 inv 0 < account . balance + salary ;
6
7 public void Spend1 (int amount ) {
8 account . Withdraw (amount );
9 }

10
11 public void Spend2 (int amount ) {
12 account .balance -= amount ;
13 }
14 }
15
16 public class Account {
17 public int balance ;
18
19 public void Withdraw ( int amount ) {
20 balance -= amount ;
21 }
22 }
23
24 public class SavingsAccount : Account {
25 inv 0 <= balance ;
26 }

Fig. 1. A C# example on invariant violations.
We declare invariants using a special inv key-
word and assume that fields hold non-null val-
ues.

We present three scenarios in which
the traditional approach of check-
ing at the end of each method
whether it maintains the invariant
of its receiver is insufficient. These
scenarios have been identified by
work on formal verification and to-
gether with a fourth scenario—call-
backs, which are not relevant here
as explained in Sect. 8—have been
shown to cover all cases in which
traditional invariant checking does
not suffice [3]. We assume that in-
variants are specified explicitly in
the code as contracts. However, our
technique applies equally to predi-
cates that are provided as separate
input to the test case generator or
invariants that have been inferred
from program runs.

We illustrate the scenarios using the C# example in Fig. 1. For simplicity,
we assume that all fields hold non-null values. A Person holds an Account and
has a salary. An Account has a balance. Person’s invariant (line 5) requires
that the sum of the account’s balance and the person’s salary is positive. A
SavingsAccount is a special Account whose balance is non-negative (line 25).
In each of the following scenarios, we consider an object p of class Person that
holds an Account a.

Direct field updates: In most object-oriented languages, such as C++, C#,
and Java, a method may update not only fields of its receiver but of any object
as long as the fields are accessible. For instance, method Spend2 (which is an
alternative implementation of Spend1) subtracts amount from the account’s
balance through a direct field update instead of calling method Withdraw. Such
direct field updates are common among objects of the same class (say, nodes of
a list) or of closely connected classes (say, a collection and its iterator). If a is a
SavingsAccount, method Spend2 might violate a’s invariant by setting balance
to a negative value. A check of the receiver’s invariant at the end of method
Spend2 (here, Person object p) does not reveal this violation. In order to detect
violations through direct field updates, one would have to check the invariants



68 M. Christakis, P. Müller, and V. Wüstholz

of all objects whose fields are assigned to directly. However, these objects are
not statically known (for instance, when the direct field update occurs within a
loop), which makes it difficult to impose such checks.

Subclassing: Subclasses may restrict the possible values of a field inherited
from a superclass, i.e., they strengthen the invariant for this field, as shown by
class SavingsAccount. Methods declared in the superclass are typically designed
for and tested with instances of the superclass as their receiver, and thus the tests
check only the weaker superclass invariant. When such methods are inherited by
the subclass and called on subclass instances, they may violate the stronger
subclass invariant. In our example, in case a is a SavingsAccount, calling the
inherited method Withdraw on a might set balance to a negative value and
violate the invariant of the subclass. To detect such violations, one would have
to re-test every inherited method whenever a new subclass is declared. Moreover,
subclassing makes the invariant checks for direct field updates even more difficult
because one would have to consider all subclasses for the objects whose fields are
updated. For instance, when introducing SavingsAccount, testing Withdraw on
a subclass instance is not sufficient; one has to also re-test method Spend2 to
detect the invariant violation described in the previous scenario.

Multi-object invariants: Most data structures are implemented as aggre-
gations of several objects. For such aggregate structures, it is common that an
object invariant constrains and relates the states of several objects. In our ex-
ample, the invariant of class Person relates the state of a Person object to the
state of its Account. For such multi-object invariants, modifying the state of one
object might break the invariant of another. For instance, when Account a ex-
ecutes method Withdraw, it might reduce the balance by an amount such that
it violates the invariant of Person p. To detect such violations, one would have
to check the invariants of all objects that potentially reference a, e.g., the invari-
ants of Person objects sharing the account, of collections storing the account,
etc. These objects are not statically known and cannot even be approximated
without inspecting the entire program, which defeats the purpose of unit testing.

These scenarios demonstrate that the traditional way of checking object in-
variants may miss violations in common situations and that the checks cannot
be strengthened in any practical way. Therefore, simply including all necessary
invariant checks in the test oracle is not feasible; other techniques are required
to detect invariant violations.

3 Approach

For a given UUT we synthesize client code in the form of PUTs to detect in-
variant violations. The synthesis is based on a set of four fixed templates that
capture the three scenarios of Sect. 2. Each template consists of a sequence of
candidate operations, i.e., updates of public fields and calls to public methods.
These operations are applied to the object whose invariant is under test or, in
the case of aggregate structures, its sub-objects. (Note that since our approach
synthesizes client code, it uses public candidate operations. To also synthesize



Synthesizing Parameterized Unit Tests to Detect Object Invariant Violations 69

code of possible subclasses, one would analogously include protected fields and
methods.) The candidate operations are selected conservatively from the UUT
based on whether they potentially lead to a violation of the object invariant. De-
pending on the template, additional restrictions are imposed on the candidate
operations, e.g., that they are inherited from a superclass. By instantiating the
templates with candidate operations, the synthesized PUTs become snippets of
client code that potentially violate the object invariant.

Alg. 1. Synthesis of parameterized unit tests.
1 function Synthesize(class, inv, len)
2 candOps ← ComputeCandOps(class, inv)
3 puts ← GenFieldCombs(candOps, len)
4 puts ← puts + GenMultiCombs(candOps, len, inv)
5 puts ← puts + GenSubCombs(candOps, len)
6 puts ← puts + GenAllCombs(candOps, len)
7 return AddSpecs(puts)

Alg. 1 shows the gen-
eral strategy for the
PUT synthesis. Func-
tion Synthesize takes
the class of the object
to which candidate op-
erations should be ap-
plied (class), the object
invariant under test (inv), and the desired length of the PUTs to be synthesized
(len). The last argument prevents a combinatorial explosion by bounding the
number of operations in each synthesized PUT. Synthesize returns a list of
PUTs. Each PUT consists of a sequence of candidate operations and additional
specifications, such as invariant checks, which are inserted by AddSpecs and
explained in Sect. 4. The algorithm first determines the set of candidate opera-
tions (candOps) of class that could potentially violate the object invariant inv.
It then synthesizes the PUTs for each of the three scenarios using the corre-
sponding templates. We discuss the selection of candidate operations as well as
these templates in detail in the next sections.

We complement the templates, which cover specific scenarios for violating in-
variants, by an exhaustive enumeration of combinations (of length len) of candi-
date operations. In the algorithm, these combinations are computed by function
GenAllCombs. As we will see in Sect. 5, this exhaustive exploration is useful
for multi-object invariants where the actual violation may happen by calling a
method on a sub-object of an aggregate structure.

For a given UUT, we apply function Synthesize for each class in the unit
and the invariant it declares or inherits. We perform this application repeatedly
for increasing values of len. All operations in the resulting PUTs have argu-
ments that are either parameters of the enclosing PUT or results of preceding
operations; all such combinations are tried exhaustively, which, in particular, in-
cludes aliasing among the arguments. This makes the PUTs sufficiently general
to capture the scenarios of the previous section, i.e., to detect invariant violations
caused by these scenarios. We employ dynamic symbolic execution (DSE) [7,16]
to supply the arguments to the PUTs.

4 Candidate Operations

To synthesize client code that violates object invariants, we select candidate
operations from the public fields and methods of the UUT. To reduce the number



70 M. Christakis, P. Müller, and V. Wüstholz

of synthesized PUTs, we restrict the operations to those that might violate a
given invariant. Such operations are determined by intersecting the read effect
of the invariant with the write effect of the operation. The read effect of an
invariant is the set of fields read in the invariant. If the invariant contains calls
to side-effect free methods, the fields (transitively) read by these methods are also
in its read effect. The write effect of a method is the set of fields updated during
an execution of the method including updates performed through method calls.
The write effect of a field update is the field itself. Note that the effects are sets of
(fully-qualified) field names, not concrete instance fields of objects. This allows us
to use a simple, whole-program static analysis that conservatively approximates
read and write effects without requiring alias information (see Sect. 6).

public class C {
public int x;
int y;

inv x == 42;

public void SetX() { x = y; }

public void SetY( int v) { y = v; }
}

To illustrate these concepts, consider
the example on the right. The read effect
of the invariant is {C.x} indicating that
only the value of C’s field x determines
whether the invariant holds. The write
effect of an update to the public field x
and of method SetX is {C.x}, while method SetY has write effect {C.y}. By
intersecting these read and write effects, we determine that field updates of x
and calls to SetX must be included in the candidate operations.

void PUT_0 (C o, int v) {
assume o != null && o. Invariant();
o.x = v;
assert o.Invariant();

}
void PUT_1 (C o) {

assume o != null && o. Invariant();
o.SetX ();
assert o.Invariant();

}

With these operations, the exhaus-
tive enumeration of sequences of length 1
(function GenAllCombs in Alg. 1) pro-
duces the two PUTs on the right (PUT_0,
PUT_1). As shown here, each synthesized
test expects as argument a non-null ob-
ject o whose invariant holds, applies the synthesized sequence of candidate opera-
tions to o, and then asserts that o’s invariant still holds. We encode the invariant
via a side-effect free boolean method Invariant and use assume statements to
introduce constraints for the symbolic execution. The assume and assert state-
ments are inserted into the PUTs by function AddSpecs of Alg. 1. The input
object o is constructed using operations from the UUT, for instance, a suitable
constructor. As explained above, the arguments of candidate operations (like the
value v for the assignment to o.x in the first test) are either parameters of the
PUT and supplied later via DSE, or results of preceding operations.

Whether a method call violates an invariant may not only depend on its
arguments but also on the state in which it is called. For instance, a call to SetX
violates the invariant only if y has a value different from 42. Therefore, tests that
apply more than one candidate operation must take into account the possible
interactions between operations. Consequently, for each candidate operation opd

that might directly violate a given object invariant, we compute its read effect
and include in the set of candidate operations each operation opi whose write
effect overlaps with this read effect and might, therefore, indirectly violate the
invariant. To prune the search space, we record that opi should be executed
before opd. This process iterates until a fixed point is reached.



Synthesizing Parameterized Unit Tests to Detect Object Invariant Violations 71

void PUT_2 (C o, int v) {
assume o != null && o. Invariant();
o.SetY(v);
assume o.Invariant();
o.SetX ();
assert o.Invariant();

}

In our example, method SetX has read
effect {C.y}. As a result, method SetY is
used in the PUTs as a candidate oper-
ation that should be called before SetX.
Therefore, the exhaustive enumeration of
sequences of length 2 includes the PUT above (PUT_2). Note that, by assuming
o’s invariant before the call to SetX, we suppress execution paths that have al-
ready been tested in a shorter PUT, i.e., paths that violate o’s invariant before
reaching the final operation.

5 Synthesis Templates

We now present the templates that capture the three scenarios of Sect. 2. Be-
sides other arguments, each template expects an object r to which candidate
operations are applied, and an object o whose invariant is under test. When the
templates are used to synthesize an entire test, these two objects coincide and we
include only one of them in the PUT. The templates are also used to synthesize
portions of larger PUTs, and then r and o may refer to different objects.

5.1 Direct Field Updates
void DFU(r, o, a0..aN) {

assume r != null;
assume o != null && o. Invariant();
Op0(r, ...); ... OpM(r, ...);
assume o.Invariant();
r.f = v;
assert o.Invariant();

}

The direct-field-update template tries to
violate the invariant of an object o by as-
signing to a field of r (or to an element
of r when r is an array). The template
has the form shown on the right. It ap-
plies a sequence of operations (Op0 to OpM) to r to create a state in which the
subsequent update of r.f may violate o’s invariant. For instance, if the invariant
relates f to private fields of the same object, these operations may be method
calls that update these private fields. The operations Op0 to OpM are selected
from the set of candidate operations and may include a method call or field
update more than once. Their arguments as well as the right-hand side v of the
last field update are either parameters of the template (a0 to aN) or results of
preceding operations; all such combinations are tried exhaustively.

Alg. 2. Synthesis of parameterized unit tests
from the direct-field-update template.
1 function GenFieldCombs(candOps, len)
2 puts ← []
3 combs ← GenAllCombs(candOps, len−1)
4 fieldOps ← FieldOps(candOps)
5 foreach comb in combs
6 foreach fieldOp in fieldOps
7 puts ← puts + [comb + [fieldOp]]
8 return puts

The synthesis of PUTs from
this template is performed by
function GenFieldCombs in
Alg. 2, which is invoked from
Alg. 1. Line 3 generates all possi-
ble sequences of length len − 1
from the set of candidate op-
erations. Line 4 selects the set
fieldOps of all field updates from
the set of candidate operations, candOps. Lines 5–7 append each field update
fieldOp to each of the sequences of operations computed earlier.



72 M. Christakis, P. Müller, and V. Wüstholz

void PUT_DFU ( Person o, int a, int s) {
assume o != null && o.Invariant();
o.Spend1 (a);
assume o. Invariant();
o.salary = s;
assert o. Invariant();

}

Consider an invocation of the syn-
thesis with this template, where the
object to which operations are applied
and the object whose invariant is being
tested are the same instance of class
Person from Fig. 1. The synthesized PUTs of length 2 include the test above
(PUT_DFU). Symbolically executing this PUT produces input data that causes
the assertion of the invariant to fail; for instance, a Person object with salary
100 and whose Account has balance 100 for o, the value 150 for a, and any
value less than or equal to 50 for s.

5.2 Subclassing
void S(r, o, a0..aN) {

assume r != null;
assume o != null && o. Invariant();
Op0(r, ...); ... OpM(r, ...);
assume o.Invariant();
Op_super (r, ...);
assert o.Invariant();

}

The template for the subclassing scenario
(on the right) aims at breaking the in-
variant of an object by invoking inher-
ited operations. It exhaustively applies a
number of operations to an object of the
subclass, including any operations inherited from a superclass, and requires that
the last operation is an inherited one (i.e., an update of an inherited field or
a call to an inherited method) to reflect the subclassing scenario described in
Sect. 2. Like in the template for direct field updates, the first M + 1 operations
(Op0 to OpM) construct a state in which the final inherited operation may violate
o’s invariant as this operation was designed to maintain the weaker invariant
of a superclass. This template is useful only when a subclass strengthens the
invariant of a superclass with respect to any inherited fields. We identify such
subclasses using a simple syntactic check: if the read effect of the invariant de-
clared in the subclass includes inherited fields, we conservatively assume that
the invariant is strengthened with respect to those.

void PUT_S( SavingsAccount o, int a) {
assume o != null && o.Invariant();
o.Withdraw (a);
assert o. Invariant();

}

The synthesis of PUTs based on
this template is performed by function
GenSubCombs, which is invoked from
Alg. 1. GenSubCombs is analogous to
GenFieldCombs (Alg. 2) except that on line 4 it selects the candidate op-
erations that are inherited from a superclass. Consider an invocation of the
synthesis with this template, where the object to which operations are applied
and the object whose invariant is being tested are the same instance of class
SavingsAccount from Fig. 1. This class strengthens the invariant of its super-
class Account for the inherited field balance. The synthesized PUTs of length
1 include the test above (PUT_S). The symbolic execution of this PUT pro-
duces input data that causes the assertion of the invariant to fail; for instance, a
SavingsAccount object with a balance of 0 for o and any positive value for a.

5.3 Multi-object Invariants

Multi-object invariants describe properties of aggregate structures. The invariant
of such a structure may be violated by modifying its sub-objects. For instance,



Synthesizing Parameterized Unit Tests to Detect Object Invariant Violations 73

one might be able to violate a Person’s invariant by reducing the balance of its
account. Such violations are possible when sub-objects of the aggregate structure
are not properly encapsulated [12] such that clients are able to obtain references
to them: when a client obtains a direct reference to the Account sub-object, it
can by-pass the Person object and modify the account in ways that violate the
Person’s invariant. To reflect this observation, we use two templates that allow
clients to obtain references to sub-objects of aggregate structures. One template
uses leaking, i.e., it passes a sub-object from the aggregate structure to its client.
The other one uses capturing, i.e., it passes an object from the client to the
aggregate structure and stores it there as a sub-object. Leaking and capturing
are the only ways in which clients may obtain a reference to a sub-object of an
aggregate structure.

Leaking. A method is said to leak an object l if the following three conditions
hold: (1) the method takes as an argument (or receiver) an object o that (directly
or transitively) references l, (2) the method returns the reference to l or assigns
it to shared state, and (3) a field of l is dereferenced in o’s invariant. We use a
static analysis to approximate the operations that might leak a sub-object (see
Sect. 6). These operations include reading public fields with reference types.

For example, assume that class Person from Fig. 1 provides a public getter
GetAccount for field account. This method leaks the account sub-object of its
receiver since (1) its receiver directly references the account, (2) it returns the ac-
count, and (3) account is dereferenced in the invariant of Person. Consequently,
this getter enables clients to obtain a reference to the account sub-object and
violate Person’s invariant, for instance by invoking Withdraw on the account.

void L(r, o, a0..aN) {
assume r != null;
assume o != null && o. Invariant();
Op0(r, ...); ... OpM(r, ...);
var l = Op_leaking(r, ...);
... // operations on leaked 'l'
assert o.Invariant();

}

In the template for leaking (on the
right), we first apply a number of oper-
ations to create a state in which a sub-
object l may be leaked via the operation
Op_leaking. Once the object has been
leaked, we try to violate o’s invariant by applying operations to the leaked ob-
ject l (indicated by the ellipsis with the corresponding comment in the above
template). To obtain a suitable sequence of operations on l, we apply function
Synthesize (Alg. 1) recursively with the class of the leaked object l and the in-
variant of o. This recursive call selects candidate operations on l that may break
o’s invariant, for instance by updating a public field of l or via complex combi-
nations of scenarios such as repeated leaking. Note that this template attempts
to violate o’s invariant; whether l’s invariant holds is an orthogonal issue.

void PUT_L (Person o, int a) {
assume o != null && o. Invariant();
var l = o.GetAccount();
// exhaustive enumeration
assume l != null && o. Invariant();
l. Withdraw (a);
assert o.Invariant();

}

Based on this template, we obtain the
PUT on the right (PUT_L) for objects of
class Person from Fig. 1. In this test,
method GetAccount leaks the Person’s
account object. The recursive applica-
tion of function Synthesize determines method Withdraw as a candidate op-
eration because its write effect includes balance, which is also in the read ef-
fect of Person’s invariant. Withdraw is selected by the exhaustive enumeration



74 M. Christakis, P. Müller, and V. Wüstholz

(function GenAllCombs of Alg. 1) and would not be selected by any of the
other templates. Symbolically executing this PUT produces input data that
causes the assertion of the invariant to fail; for instance, a Person object with
salary 100 and whose Account has balance 100 for o, and a value of at least
200 for a.

Capturing. A method is said to capture an object c if: (1) the method takes
as arguments two objects o and c (o or c could also be the receiver), (2) the
method stores a reference to c in a location reachable from o, and (3) the field
in which c is stored is dereferenced in o’s invariant. Updating a field f that has
a reference type is also considered capturing if f is dereferenced in o’s invariant.

void C(r, o, c, a0..aN) {
assume r != null;
assume o != null && o. Invariant();
Op0(r, ...); ... OpM(r, ...);
Op_capturing(r, c, ...);
... // operations on captured 'c'
assert o.Invariant();

}
void Cctor (c, a0..aN) {

assume c != null;
Op0(c, ...); ... OpM(c, ...);
var o = new ctor(c, ...);
... // operations on captured 'c'
assert o.Invariant();

}

The template for capturing (on the
right) is analogous to leaking. In partic-
ular, it also uses a recursive application
of function Synthesize to determine the
operations to be applied to the captured
object. In the common case that the cap-
turing operation is a constructor of ob-
ject o, the template is adjusted as shown
on the right (Cctor). This adjustment en-
sures that o is actually created with a
constructor that captures c instead of a
constructor selected by the symbolic execution. Note that before the capturing
operation we could also allow a number of operations on c with the goal of
bringing it to a state such that, for instance, the precondition of Op_capturing
is satisfied or the capturing execution path is taken. We omit such operations to
simplify the presentation.

Alg. 3. Synthesis of parameterized unit tests from the
leaking and capturing templates.
1 function GenMultiCombs(candOps, len, inv)
2 puts ← []
3 multiOps ← MultiOps(candOps)
4 for i = 0 to len − 2 do
5 prefixes ← GenAllCombs(candOps, i)
6 foreach multiOp in multiOps
7 class ← GetClass(multiOp)
8 suffixes ← Synthesize(class, inv, len − 1 − i)
9 foreach prefix in prefixes
10 foreach suffix in suffixes
11 put ← prefix + [multiOp] + suffix
12 puts ← puts + [put]
13 return puts

Synthesis. The synthe-
sis of PUTs based on
these templates is per-
formed by the Gen-
MultiCombs function
in Alg. 3. On line 3,
a new set of candidate
operations, multiOps, is
created by selecting from
candOps the operations
that leak or capture ob-
jects according to the
above criteria. Since the
synthesis for these templates includes a recursive application of Synthesize, we
must split the overall length of the PUT between the operations occurring before
the leaking or capturing operation and the operations on the leaked or captured
object occurring after. To explore all possible splits, we generate all combina-
tions of candidate operations of length up to len − 2 to be applied before the



Synthesizing Parameterized Unit Tests to Detect Object Invariant Violations 75

leaking or capturing operation (lines 4–5). These operations create a state in
which the next operation can leak or capture an object. After invoking any such
operation, we recursively apply function Synthesize of Alg. 1 by taking into
account the class of the leaked or captured object (class) and the original object
invariant under test, inv (lines 6–8). Therefore, suffixes is a list of sequences
of operations to be applied to the leaked or captured object. On lines 9–12, we
combine the synthesized sub-sequences of lengths i, 1, and len − 1 − i.

6 Implementation

We have implemented our technique as an extension to Pex. Our implemen-
tation builds a static call-graph for the entire UUT that includes information
about dynamically-bound calls. The call-graph is used to compute the read and
write effects of all methods in the UUT with a conservative, inter-procedural,
control-flow insensitive static analysis on the .NET bytecode. The effects de-
termine the candidate operations that might, directly or indirectly, lead to an
invariant violation (see Sect. 4). Our effect analysis is extended to also approx-
imate the sets of leaking and capturing operations using their read and write
effects, respectively, in addition to the read effect of the invariant under test. For
simplicity, we only consider leaking operations that return the leaked object or
store it in a public field of their receiver.

To detect invariant violations more efficiently, we carefully chose the order
in which the synthesis (Alg. 1) applies the templates of Sect. 5 and exhaustive
enumeration. The templates for direct field updates and multi-object invariants
have proven to most effectively detect invariant violations and are therefore
explored first. The exhaustive enumeration comes last as it produces the largest
number of PUTs and requires the most effort in the symbolic execution.

7 Experimental Evaluation

We have evaluated the effectiveness of our technique using ten C# applications,
which were selected from applications on Bitbucket, CodePlex, and GitHub con-
taining invariants specified with Code Contracts [5]. This section focuses on our ex-
periments with the nine applications for which invariant violations were detected.

Tab. 1 summarizes the results of our experiments. The third and fourth
columns show the total number of classes and the number of classes with in-
variants for each application, respectively. We have tested the robustness of all
invariants in these applications. Note that the total number of classes refers only
to the classes that were included in the evaluation and not to all classes of each
application. We have left out only classes that were defined in dynamic-link li-
braries (DLLs) containing no object invariants. The two rightmost columns of
Tab. 1 show the unique and total numbers of invariant violations detected with
our technique. The unique number of violations refers to the number of invari-
ants that were violated at least once. The total number of violations refers to

https://bitbucket.org/
http://www.codeplex.com/
https://github.com/


76 M. Christakis, P. Müller, and V. Wüstholz

Table 1. Summary of results. The third and fourth columns show the total number
of classes and the number of classes with invariants for each application. The two
rightmost columns show the unique and total numbers of invariant violations detected
with our technique.

Application Description Classes Classes Invariant
w/ invariants violations

unique total
Boogie Intermediate verification engine1 355 144 21 64
ClueBuddy GUI application for board game2 44 4 1 2
Dafny Programming language/verifier3 310 113 15 53
Draugen Web application for fishermen4 36 5 3 3
GoalsTracker Various web applications5 63 5 1 1
Griffin .NET and jQuery libraries6 31 3 1 1
LoveStudio IDE for the LÖVE framework7 66 7 2 2
Encore ‘World of Warcraft’ emulator8 186 30 1 4
YAML YAML library9 76 6 1 2

the number of distinct PUTs that led to invariant violations and may include
violations of the same object invariant multiple times.

When running Pex with our technique, we imposed an upper bound of 3 on
the number of operations per PUT, and an upper bound of 300 on the number
of synthesized PUTs per object invariant. It turned out that all unique invari-
ant violations were detected already with 2 operations per PUT; increasing the
bound to 4 for some projects did not uncover previously undetected invariant
violations. On average, 14.7 PUTs were synthesized per second. We then applied
Pex to generate input data for the synthesized PUTs forcing Pex to use only
public operations of the UUT (to guarantee that all inputs are constructible in
practice). We counted the number of unique invariant violations and of distinct
PUTs that led to invariant violations. We imposed a timeout of 3 minutes for
the DSE in Pex to generate inputs for and run the synthesized PUTs. Here, we
report the number of invariant violations that were detected within this time
limit. Within this time limit, the first invariant violation was detected within 4–
47 seconds (12.8 seconds on average) for all object invariants in all applications.

1 http://boogie.codeplex.com, rev: f2ffe18efee7
2 https://github.com/AArnott/ClueBuddy,

rev: c1b64ae97c01fec249b2212018f589c2d8119b59
3 http://dafny.codeplex.com, rev: f2ffe18efee7
4 https://github.com/eriksen/Draugen ,

rev: dfc84bd4dcf232d3cfa6550d737e8382ce7641cb
5 https://code.google.com/p/goalstracker , rev: 556
6 https://github.com/jgauffin/griffin,

rev: 54ab75d200b516b2a8bd0a1b7cfe1b66f45da6ea
7 https://bitbucket.org/kevinclancy/love-studio, rev: 7da77fa
8 https://github.com/Trinity-Encore/Encore,

rev: 0538bd611dc1bc81da15c4b10a65ac9d608dafc2
9 http://yaml.codeplex.com, rev: 96133

http://boogie.codeplex.com
https://github.com/AArnott/ClueBuddy
http://dafny.codeplex.com
https://github.com/eriksen/Draugen
https://code.google.com/p/goalstracker
https://github.com/jgauffin/griffin
https://bitbucket.org/kevinclancy/love-studio
https://github.com/Trinity-Encore/Encore
http://yaml.codeplex.com


Synthesizing Parameterized Unit Tests to Detect Object Invariant Violations 77

The total violations found by our technique may be classified into the fol-
lowing categories based on the template that was instantiated: 60 due to direct
field updates, 41 due to leaking, and 25 due to capturing. The remaining 6 vi-
olations were detected by the exhaustive enumeration. Out of these 6 invariant
violations, 5 are also detected by the version of Pex without our technique, i.e.,
with the traditional approach of checking the invariant of the receiver at the
end of a method. The last violation requires a sequence of two method calls
and was detected only by our technique. This is because Pex could not generate
appropriate input data to the second method such that the invariant check at
the end of the method failed. In this case, the exhaustive enumeration served
as a technique for generating more complex input data. The object invariants
that were violated at least once can be classified into the following categories:
27 invariants were violated at least once due to direct field updates, 24 due to
leaking, 17 due to capturing, and 5 due to the exhaustive enumeration. Note
that in these applications we found no subclasses that strengthen the invariant
of their superclass with respect to any inherited fields. This is why no invariant
violations were detected with the subclassing template.

An example of an invariant violation detected by our technique in LoveStudio
is shown on the right. A StackPanel object has a LuaStackFrame array, and its
invariant holds if all array elements are non-null. In the PUT, method SetFrames
captures a0 depending on the value of a1. The last operation of the test assigns
a LuaStackFrame object to the array at a valid index a2. In case a3 is null, o’s
invariant is violated.

void PUT( StackPanel o,
LuaStackFrame[] a0 , bool a1 ,
int a2 , LuaStackFrame a3) {

assume o != null && o.Invariant();
o.SetFrames(a0 , a1 );
assume a0 != null && o.Invariant();
assume 0 <= a2 && a2 < a0.Length ;
a0[a2] = a3;
assert o. Invariant();

}

We have manually inspected all de-
tected invariant violations. Violations
detected with the direct-field-update
template reveal design flaws and can be
fixed by making fields private and pro-
viding setters that maintain the invari-
ants. Violations due to leaking or capturing could be fixed either by cloning
the leaked or captured objects, or by using immutable types in the interfaces
of the classes whose invariants are under test. The largest number of invariant
violations found with the leaking and capturing templates was detected in the
Boogie and Dafny applications, which declare several multi-object invariants in
their code.

The detected invariant violations indicate overly strong invariants in the sense
that they may be violated by possible clients of a UUT. These clients are not
necessarily present in a given application and, thus, the violations do not neces-
sarily reveal bugs. This behavior is to be expected for unit testing, where each
unit is tested independently of the rest of the application. Nevertheless, the de-
tected violations do indicate robustness issues that might lead to bugs during
maintenance or when classes are reused as libraries. We discussed the detected
invariant violations in Boogie and Dafny with the lead developer, Rustan Leino.
All of them seem to indicate robustness issues, which will be addressed by either
weakening the invariants or changing the design of the code.



78 M. Christakis, P. Müller, and V. Wüstholz

8 Related Work

Our approach to testing object invariants is inspired by static verification tech-
niques. Poetzsch-Heffter [14] pointed out that the traditional way of checking the
invariant of the receiver at the end of each method is insufficient. The checks he
proposed are sufficient for sound verification, but not suitable as unit test oracles
since they make heavy use of universal quantification. Some modular verification
techniques for object invariants [9,12] handle the challenges mentioned in Sect. 2,
but require annotation overhead that does not seem acceptable for testing.

We distilled our templates for test synthesis from a formal framework for
verification techniques for object invariants [3]. This framework identifies an ad-
ditional scenario (not presented in Sect. 2) involving a call-back. In this scenario,
a method L violates the invariant of its receiver r and then calls another method
M. If M performs a call-back r.N, method N finds the invariant of r broken, which
may lead to an error in the body of N or a violation of the invariant check at the
end of N. We omitted this scenario because Pex already detects such problems
while testing L. It attempts to generate inputs for L that violate the assertions
in method L and all methods it calls, in particular, the check of r’s invariant at
the end of N.

There are several test case generators for object-oriented programs that rely
on invariants, but miss the violations presented here. AutoTest [11], a random
testing tool for Eiffel, follows the traditional approach of checking the invariant
of the receiver at the end of each method. Pex [19] follows the same approach, but
asserts the invariant of the receiver only at the end of public methods. Korat [1]
and Symbolic Java PathFinder [15] do not check object invariants of the UUT
at all; they use invariants only to filter test inputs. All such tools may miss bugs
when object invariants are violated and would thus benefit from our technique.

Work on synthesizing method call sequences to generate complex input data
is complementary to ours. In fact, such approaches could be applied in place
of the object construction mechanism in Pex to generate input objects for our
PUTs. In certain cases, this might reduce the length of the synthesized tests since
fewer candidate operations may be required to generate the same objects. These
approaches include a combination of bounded exhaustive search and symbolic
execution [22], feedback-directed random testing [13], a combination of feedback-
directed random testing with concolic testing [6,2], evolutionary testing [21], an
integration of evolutionary and concolic testing [8], and source code mining [17].
Moreover, Palus [23] combines dynamic inference, static analysis, and guided
random test generation to automatically create legal and behaviorally-diverse
method call sequences. In contrast to existing work, our technique synthesizes
code that specifically targets violations of object invariants. This allows for a
significantly smaller search space restricted to three known scenarios in which
invariant violations may occur.

The work on method call synthesis most closely related to ours is Seeker [18],
an extension to Pex that combines static and dynamic analyses to construct
input objects for a UUT. More specifically, Seeker attempts to cover branches
that are missed by Pex. Even though this approach does not rely on object



Synthesizing Parameterized Unit Tests to Detect Object Invariant Violations 79

invariants, the negation of an invariant could be regarded as a branch to be
covered. However, some of the scenarios of Sect. 2 are not captured by Seeker’s
static analysis. For example, a multi-object invariant violation involves leaking or
capturing parts of an object’s representation, and might not necessarily involve
a sequence of missed branches. The same holds for subclassing.

9 Conclusion

We have presented a technique for detecting object invariant violations by syn-
thesizing PUTs. Given one or more classes under test, our technique uses a set
of templates to synthesize snippets of client code. We then symbolically execute
the synthesized code to generate inputs that might lead to invariant violations.
As a result, our technique may reveal critical defects in the UUT, which go un-
detected by existing testing tools. We have demonstrated the effectiveness of our
implementation on a number of C# applications with object invariants.

Acknowledgments. We thank Nikolai Tillman and Jonathan “Peli” de Halleux
for sharing the Pex source code with us. We also thank Timon Gehr for imple-
menting and evaluating parts of this technique for his Bachelor’s thesis, and the
reviewers for their constructive feedback.

References

1. Boyapati, C., Khurshid, S., Marinov, D.: Korat: Automated testing based on Java
predicates. In: ISSTA, pp. 123–133. ACM (2002)

2. Dimjašević, M., Rakamarić, Z.: JPF-Doop: Combining concolic and random testing
for Java. In: Java Pathfinder Workshop. Extended abstract (2013)

3. Drossopoulou, S., Francalanza, A., Müller, P., Summers, A.J.: A unified framework
for verification techniques for object invariants. In: Vitek, J. (ed.) ECOOP 2008.
LNCS, vol. 5142, pp. 412–437. Springer, Heidelberg (2008)

4. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69, 35–45 (2007)

5. Fähndrich, M., Barnett, M., Logozzo, F.: Embedded contract languages. In: SAC,
pp. 2103–2110. ACM (2010)

6. Garg, P., Ivančić, F., Balakrishnan, G., Maeda, N., Gupta, A.: Feedback-directed
unit test generation for C/C++ using concolic execution. In: ICSE, pp. 132–141.
ACM (2013)

7. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing.
In: PLDI, pp. 213–223. ACM (2005)

8. Inkumsah, K., Xie, T.: Evacon: A framework for integrating evolutionary and con-
colic testing for object-oriented programs. In: ASE, pp. 425–428. ACM (2007)

9. Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M.
(ed.) ECOOP 2004. LNCS, vol. 3086, pp. 491–515. Springer, Heidelberg (2004)

10. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall (1997)
11. Meyer, B., Fiva, A., Ciupa, I., Leitner, A., Wei, Y., Stapf, E.: Programs that test

themselves. IEEE Computer 42(9), 46–55 (2009)



80 M. Christakis, P. Müller, and V. Wüstholz

12. Müller, P., Poetzsch-Heffter, A., Leavens, G.T.: Modular invariants for layered
object structures. Sci. Comput. Program. 62, 253–286 (2006)

13. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test
generation. In: ICSE, pp. 75–84. IEEE Computer Society (2007)

14. Poetzsch-Heffter, A.: Specification and verification of object-oriented programs.
Habilitation thesis. Technical University of Munich (1997)

15. Pǎsǎreanu, C.S., Mehlitz, P.C., Bushnell, D.H., Gundy-Burlet, K., Lowry, M., Per-
son, S., Pape, M.: Combining unit-level symbolic execution and system-level con-
crete execution for testing NASA software. In: ISSTA, pp. 15–26. ACM (2008)

16. Sen, K., Marinov, D., Agha, G.: CUTE: A concolic unit testing engine for C. In:
ESEC, pp. 263–272. ACM (2005)

17. Thummalapenta, S., Xie, T., Tillmann, N., de Halleux, J., Schulte, W.: MSeqGen:
Object-oriented unit-test generation via mining source code. In: ESEC/SIGSOFT
FSE, pp. 193–202. ACM (2009)

18. Thummalapenta, S., Xie, T., Tillmann, N., de Halleux, J., Su, Z.: Synthesizing
method sequences for high-coverage testing. In: OOPSLA, pp. 189–206. ACM
(2011)

19. Tillmann, N., de Halleux, J.: Pex—White box test generation for .NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008)

20. Tillmann, N., Schulte, W.: Parameterized unit tests. In: ESEC/SIGSOFT FSE,
pp. 119–128. ACM (2005)

21. Tonella, P.: Evolutionary testing of classes. In: ISSTA, pp. 119–128. ACM (2004)
22. Xie, T., Marinov, D., Schulte, W., Notkin, D.: Symstra: A framework for generating

object-oriented unit tests using symbolic execution. In: Halbwachs, N., Zuck, L.D.
(eds.) TACAS 2005. LNCS, vol. 3440, pp. 365–381. Springer, Heidelberg (2005)

23. Zhang, S., Saff, D., Bu, Y., Ernst, M.D.: Combined static and dynamic automated
test generation. In: ISSTA, pp. 353–363. ACM (2011)


	Synthesizing Parameterized Unit Tests to Detect Object Invariant Violations
	1 Introduction
	2 Violating Object Invariants
	3 Approach
	4 Candidate Operations
	5 Synthesis Templates
	5.1 Direct Field Updates
	5.2 Subclassing
	5.3 Multi-object Invariants

	6 Implementation
	7 Experimental Evaluation
	8 Related Work
	9 Conclusion
	References




