
Systematic Testing for Complex Systems
in the Absence of Oracles

Maria Christakis 1

Abstract: Many modern software systems operate in domains where precise specifications are
unavailable and reliable test oracles are difficult or impossible to obtain. This is particularly true
for systems such as program analyzers, cryptographic proof systems, and machine-learning models,
whose correctness depends on complex semantics or learned behavior. This keynote explores how
metamorphic testing enables systematic testing in the absence of traditional oracles by checking
necessary relations across multiple executions rather than individual outputs. Drawing on experience
from testing program analyzers, zero-knowledge proof systems, and machine-learning models, the
talk highlights the effectiveness of metamorphic testing across diverse settings. Beyond individual
techniques and tools, the keynote distills general lessons on how to reason about correctness when
specifications are incomplete, relational, or implicit, and how rigorous testing remains possible even
when classical notions of correctness are difficult to apply.

Keywords: Metamorphic testing, Test oracles, Program analyzers, Zero-knowledge proof systems,
Machine-learning models

1 Introduction

Test oracles lie at the heart of software testing: to determine whether a system behaves
correctly, one must know the correct behavior. For many of today’s software systems,
however, such knowledge is incomplete or prohibitively expensive to obtain. This oracle
problem arises prominently in domains such as program analysis, cryptographic proof
systems, and machine learning, where systems reason about complex semantics, operate over
rich mathematical abstractions, or learn behavior from data rather than explicit specifications.

This keynote examines how systematic testing remains possible when traditional test oracles
are unavailable. The central thesis is that metamorphic testing provides a unifying foundation
for testing complex systems by shifting correctness from individual executions to relations
between executions. Instead of predicting exact outputs, metamorphic testing checks whether
necessary semantic relationships are preserved across transformations of inputs, programs,
or environments. Making this approach effective in practice requires careful design of
transformations, relations, and detection mechanisms tailored to each domain.

The talk synthesizes insights from applying metamorphic testing across three classes
of systems: program analyzers [Ka24; Ka26], zero-knowledge proof systems [Ho25;
HWC26], and machine-learning models [Ch23; En22; EWC24]. Together, these experiences
demonstrate the breadth of applicability and challenges of deploying the approach at scale.
1 TU Wien, Austria, maria.christakis@tuwien.ac.at, https://orcid.org/0000-0002-2649-1958

https://orcid.org/0000-0002-2649-1958
mailto:maria.christakis@tuwien.ac.at
https://orcid.org/0000-0002-2649-1958
https://orcid.org/0000-0002-2649-1958


2 Testing Without Oracles in Practice

The oracle problem manifests in different ways across modern software systems. For program
analyzers, determining whether an analysis result is correct often requires solving the very
problem the analyzer approximates. Our recent work addresses this challenge through
interrogation testing, which extends metamorphic testing by exploiting justifications such
as counterexamples or invariants to generate related queries that uncover soundness and
precision bugs in mature tools [Ka24; Ka26].

In zero-knowledge proof systems, correctness depends on complex multi-stage pipelines,
making it difficult to decide whether a proof should be accepted or rejected for a given circuit
and input. We applied metamorphic testing by generating semantically equivalent circuit
variants and checking for behavioral divergence across the pipeline, revealing soundness
and completeness bugs [Ho25; HWC26].

For machine-learning models, the challenge lies in specifying general functional-correctness
expectations beyond application-specific metrics. Metamorphic testing captures necessary
behavioral constraints by relating multiple executions. Such constraints can be expressed as
hyperproperties and checked using automated testing frameworks [Ch23; En22; EWC24].

3 Takeaway

Across these domains, many correctness expectations are inherently relational and cannot
be captured by single-execution test oracles. Metamorphic testing provides a principled
way to express and check such expectations, showing that rigorous testing remains possible
when classical notions of correctness are difficult to enforce.

References
[Ch23] Christakis, M. et al.: Specifying and Testing k-Safety Properties for Machine-Learning

Models. In: IJCAI. ijcai.org, pp. 4748–4757, 2023.
[En22] Eniser, H. F. et al.: Metamorphic Relations via Relaxations: An Approach to Obtain

Oracles for Action-Policy Testing. In: ISSTA. ACM, pp. 52–63, 2022.
[EWC24] Eniser, H. F.; Wüstholz, V.; Christakis, M.: Automatically Testing Functional Properties

of Code Translation Models. In: AAAI. AAAI, pp. 21055–21062, 2024.
[Ho25] Hochrainer, C. et al.: Fuzzing Processing Pipelines for Zero-Knowledge Circuits. In:

CCS. ACM, pp. 783–797, 2025.
[HWC26] Hochrainer, C.; Wüstholz, V.; Christakis, M.: Arguzz: Testing zkVMs for Soundness and

Completeness Bugs. In: Security. To appear, USENIX, 2026.
[Ka24] Kaindlstorfer, D. et al.: Interrogation Testing of Program Analyzers for Soundness and

Precision Issues. In: ASE. ACM, pp. 319–330, 2024.
[Ka26] Kaindlstorfer, D. et al.: Interrogation Testing of CHC Solvers. In: FSE. To appear, ACM,

2026.


