
A General Framework for Dynamic Stub Injection

Maria Christakis
Microsoft Research
Redmond, WA, USA

mchri@microsoft.com

Patrick Emmisberger
Dept. of Computer Science
ETH Zurich, Switzerland
empatric@student.ethz.ch

Patrice Godefroid
Microsoft Research
Redmond, WA, USA
pg@microsoft.com

Peter Müller
Dept. of Computer Science
ETH Zurich, Switzerland
peter.mueller@inf.ethz.ch

Abstract—Stub testing is a standard technique to simulate
the behavior of dependencies of an application under test such
as the file system. Even though existing frameworks automate
the actual stub injection, testers typically have to implement
manually where and when to inject stubs, in addition to the stub
behavior. This paper presents a novel framework that reduces
this effort. The framework provides a domain specific language
to describe stub injection strategies and stub behaviors via
declarative rules, as well as a tool that automatically injects
stubs dynamically into binary code according to these rules.
Both the domain specific language and the injection are com-
pletely language independent, which enables the reuse of stubs
and injection strategies across applications. We implemented
this framework for both unmanaged (assembly) and managed
(.NET) code and used it to perform fault injection for twelve
large applications, which revealed numerous crashes and bugs
in error handling code. We also show how to prioritize
the analysis of test failures based on a comparison of the
effectiveness of stub injection rules across applications.

I. INTRODUCTION

A notorious difficulty in testing is dealing with operations
whose behavior is not determined by the test inputs. Such
operations include certain system calls (such as obtaining
the current date), accessing external components (such as
file systems and databases), and non-deterministic opera-
tions (such as generating random numbers). Controlling the
behavior of such operations is necessary to ensure that tests
behave predictably and to increase test coverage.

The standard solution to this problem is to replace these
operations by stubs (or, similarly, fakes or mocks), whose
behavior can be controlled by the tester [1]. Using stubs
involves four main steps: (1) Deciding which functions to
replace by stubs. For example, for a file API, testers might
replace functions to read from a file, but not functions to
manipulate file names. (2) For each function to be replaced,
implementing one or more stubs. These stubs could for in-
stance provide deterministic behavior or simulate erroneous
behavior. (3) For each call to a replaced function, deciding
whether to call the original function or a stub. For instance,
it is useful to inject stubs for all calls to a non-deterministic
function, but to simulate erroneous behavior only for some
calls to prevent the application under test from terminating
early and, thus, exploring only shallow paths. (4) For each
chosen call, performing the actual stub injection.

Existing tools and frameworks automate some aspects
of these steps, but are often too restrictive. For instance,
aspect-oriented programming [2] provides an elegant way
of expressing the behavior of stubs and injecting them via
aspect weaving. However, this approach prescribes the use
of an aspect-oriented programming language, which limits
its applicability. Mocking frameworks like JMock [1], [3],
EasyMock [4], and Moq [5] provide similar functionality,
but are typically language specific, which hampers reuse
of stub code across programming languages. Fault injection
frameworks like LFI [6] and Jaca [7] inject stubs that return
error codes and set flags, but they do not allow testers to
inject arbitrary behaviors, which is for instance necessary
to simulate the behavior of external components. Several
frameworks automate the actual stub injection [8], [9], [10],
but do not provide support for the first three steps above.
As a result, testing with stubs remains a mostly manual and
time-consuming effort.

In this paper, we present a framework for stub injection
that supports all four steps outlined above. At the core of the
framework is a domain specific language (DSL) that allows
testers to express the behavior of stubs as well as flexible
strategies for injecting them. Our framework automatically
implements the specified injection rules by dynamically
altering the executable program.

A key virtue of this framework is that it is completely lan-
guage independent: stubs are expressed in a very large subset
of C that gets interpreted rather than compiled; they are
then dynamically injected into binary code. Consequently,
our framework does not require source code, which makes
it widely applicable. Moreover, the injection rules can be
reused across languages, for instance, to test different clients
of the same external component.

Being able to reuse stub injection rules across applications
does not only reduce effort; comparing their effectiveness
across applications also allows one to optimize both testing
and debugging. For instance, a rule that leads to failures in
most applications is likely to produce behavior that cannot
exist without the injection and, thus, should be reviewed to
avoid spurious errors. In contrast, a rule that hardly ever
leads to a failure is very likely to have found a true bug
when it does produce a failure. Hence, failures produced by
such rules should be given priority during the analysis of

test results. We capture the effectiveness of rules in finding
true bugs by an indicator that adapts Engler et al.’s “bugs-as-
deviant-behaviors” strategy [11] from the context of static
analysis and specification mining to automatic testing.

We illustrate the power of this general framework by
testing error handling code in mature applications, such as
Microsoft Notepad and Excel. For this purpose, we use our
framework to inject faults in system calls and measure its
effectiveness in finding bugs. For twelve mature applications,
we were able to provoke over 170 crashes; we argue that they
are due to real bugs.

This paper makes the following technical contributions:
1) A domain specific language that allows testers to

specify flexible stub injection rules. The rules express
the behavior of stubs as well as injection strategies.

2) A novel technique and implementation for dynamic
stub injection into binaries for both unmanaged (as-
sembly) and managed (.NET) code. Our technique
implements the stub injection described by the DSL
with a code instrumentation.

3) An extensive evaluation, which uses our framework to
perform fault injection for twelve mature applications
including Microsoft Excel, Word, PowerPoint, and
Notepad, and discovered numerous failures (over 170
crashes) and bugs.

4) A methodology for prioritizing the analysis of program
failures based on a comparison of the effectiveness of
stub injection rules across applications.

Outline. The next section gives an overview of our frame-
work and illustrates it on an example. Sect. III presents our
DSL, while Sect. IV explains the code instrumentation. We
present our evaluation and indicator for the effectiveness of
stub injection rules in Sect. V. We discuss related work in
Sect. VI and conclude in Sect. VII.

II. OVERVIEW

In this section, we present an example for a stub injection
rule and explain how it is applied by our framework.

Various system functions take as argument a buffer that
is being populated by the function, and flag an error if the
buffer is too small. If the data to be copied into the buffer is
not determined by the application under test (but for instance
by the file system) then stubs can be used to provide the data
or to simulate the case that the buffer is too small.

An example of such a function is GetModuleFileNameW
from the Windows kernel32.dll. It retrieves the fully-
qualified path for the file that contains a specified module,
copies it into a specified buffer, and returns the number
of copied characters (excluding the terminating null value).
If the buffer is too small, the function truncates the string
and sets the last error to ERROR_INSUFFICIENT_BUFFER.
In this case, the returned value is equal to the buffer size,
whereas it is smaller in the successful case.

1 rule KERNEL32.dll!GetModuleFileNameW(
2 hModule, lpFileName, nSize)
3 frequency every(2);
4 after {
5 if (nSize < 32767) {
6 SetLastError(
7 ERROR_INSUFFICIENT_BUFFER);
8 result = nSize;
9 }

10 }

Figure 1: An example stub injection rule.

Fig. 1 shows a stub injection rule that simulates the error
case. The rule first specifies the function whose behavior is
altered (line 1) and the names of its arguments (line 2) such
that the stub code can refer to them. Line 3 specifies the
injection strategy, which in this case directs our framework
to dynamically inject the stub for every other call to the
function. Lines 4–10 specify the stub behavior. The after
keyword (line 4) indicates that the stub will call the original
function and perform additional operations after it has ter-
minated. Here, these operations (lines 5–8) set the error code
and adjust the return value. Both adjustments are performed
only if the provided buffer is smaller than the maximum
path length in Windows.

This rule illustrates several important aspects of our
framework. First, stubs may have non-trivial behavior. For
instance, they may refer to function arguments, which is cru-
cial to specify accurate stubs and, thus, avoid false alarms.
They may also change the state in arbitrary ways: Here,
we set a global error flag, but it is also possible to modify
complex data structures. Moreover, stubs may maintain their
own data structures to implement complex behavior that
spans multiple stub invocations. We discuss such an example
in Sect. V. Second, since the stub is implemented in an
interpreted subset of C, the rule is language independent. It
can be used to test clients of this function written in various
languages. Third, our DSL allows one to either replace or
augment the behavior of the original function. Executing
the original function is useful when only some aspects of
its behavior need to be altered by the stub; it is then not
necessary to re-implement all other aspects in the stub. In
our example, the original function will still populate the
buffer, and the stub only sets the error code and result value.
Another rule for the same function could specify not to
call the original function, and instead, contain a stub that
populates the buffer itself.

To apply stub injection rules, we use a custom loader for
Dynamic Link Libraries (DLLs) that instruments the loaded
DLL to inject calls to our runtime component in the func-
tions prescribed by the rules. Fig. 2 illustrates the workflow.
To use our framework, the application under test is started
through a dedicated launcher, which instructs the Windows
loader to load our runtime component as the very first

2

Launcher

Framework
runtime

Loader

DLLs
on disk

DLLs
in memory

Executor

Configuration

Figure 2: The workflow of stub injection.

statically imported DLL. Upon loading, our runtime wraps
the Windows loader with our own dedicated loader, which
reads the stub injection rules from disk and instruments
each subsequently loaded DLL (in memory). Once all DLLs
are loaded and instrumented, the executor calls the main

function of the application. Executing the application may
trigger the loading of additional DLLs, which are handled
analogously. For each call to an instrumented function, the
executor dynamically evaluates the injection strategy and, if
required, interprets the stub code.

Performing the instrumentation dynamically on the level
of binaries has several advantages: First, our framework does
not need source code, which makes it widely applicable.
Second, we instrument the code that is actually deployed,
which avoids potential issues with compilation and optimiza-
tion. Third, it is not necessary to know in advance which
DLLs will be loaded by an application. Fourth, our approach
handles complex invocation schemes including recursion, re-
entrant calls, and calls through function pointers; these are
difficult for approaches based on static rewriting.

We used the rule in Fig. 1 and the above workflow to test
Microsoft Notepad, which revealed a bug: as soon as the
“Save File” dialog appears, the application crashes because
it incorrectly assumes the path to be a short path (whose
length is limited to 260).

III. A DSL FOR DYNAMIC STUB INJECTION

Our DSL for writing stub injection rules allows testers
to control the functionality of our framework. The most
interesting aspects of the grammar are presented in Fig. 3
and explained below. We omit some features (such as the
ability to import headers) for brevity.

The configuration c of our framework consists of dec-
larations of global and thread-local variables, and of a list
of rule definitions. The variables allow stubs to maintain
data structures that persist across several stub invocations,
for instance, to compare the results of two subsequent calls
(see Sect. V-C for an example). A rule r specifies a set of
target functions, an injection strategy, and a stub.

The set of target functions includes only DLL-exported
functions and is determined by two patterns for module and
function names, m and f . A pattern is either an identifier

Configuration c ::= global(decls) thread(decls) r

Rule r ::= rule m!f [(p)] is sb

Strategy is ::= (dp fr rp) | none
Stub sb ::= bf af vs

Depth dp ::= depth (all | top)
Frequency fr ::= frequency

(every(int) | probability(float) |
every probability(int,float))

Repeat rp ::= repeat (infinity | int)

Before bf ::= before {code}
After af ::= after {code}
Variables vs ::= call(decls)

Figure 3: The most interesting aspects of the grammar
of our DSL. x denotes a possibly empty list of symbols x.
We omit the specification of (optional) type information.

(the name of the module or function), a wildcard (*),
which matches anything, or a regular expression. Regular
expressions are useful to specify injection rules for a whole
class of functions. For example, system functions whose
name contains create typically return a handle to a newly
created resource. Our DSL allows one to conveniently write
one rule to inject stubs in all of them. After these patterns,
the user may optionally specify the function parameters p in
order to refer to them later in the stub.

The sets of target functions of different rules may overlap.
For any given call, our framework applies the last rule in the
configuration that matches the module and function name.

As we will discuss in Sect. IV, our framework uses
the type information available in the debugging symbols to
locate function entry points. If the debugging symbols are
not available, testers may include both parameter and result
types in the rules (not shown in the grammar).

Our framework instruments target functions with function-
ality that determines dynamically whether or not to inject
a stub for any given call to the function. This decision is
prescribed via the injection strategy is , which is defined as
a combination of three filters; stubs are injected only for
calls that pass all three. The depth filter dp filters calls
based on the call stack. The option all retains all calls;
top drops calls that are called (directly or transitively) by
an instrumented function, for instance, recursive calls. The
top option is useful to retain only calls at API boundaries,
but drop calls from within the API or an injected stub.

The frequency filter fr and repeat filter rp select calls
based on the call history. For the frequency filter, the
option every(n) retains every n-th call to the same func-
tion and drops the others. For convenience, we support
the option always as a shorthand for every(1). The
option probability(p) retains the call with probability
p. We use never as a shorthand for probability(0).

3

Finally, every_probability(n,p) combines the every
and probability options. It drops the call with probability
1 − p. Out of the remaining calls to the same function, it
retains every n-th. Finally, the repeat filter rp retains all calls
with option infinity or only the first n calls to a function.

For convenience, any of the filters may be omitted.
In this case, we choose the most permissive filter as
default (that is, depth all, frequency always, and
repeat infinity).

As an alternative to the three filters, the strategy is can
be set to none. In this case, the framework ignores the call
completely. This option is useful to override earlier, general
rules in the configuration for specific functions.

Our framework injects stubs for those instrumented calls
that pass all three filters of the injection strategy. The
behavior of a stub sb is described via three components.
The before action specifies code that is executed upon
entry to the stub. If this code executes a return statement,
the stub terminates. Otherwise, our framework automatically
executes the original function for which the stub was in-
jected, followed by the code specified in the after action.
This structure allows stubs to either replace or augment
the original function. Replacing the original function is for
instance useful when the stub simulates the behavior of an
external component such as a database; augmenting lets the
stub reuse some of the original function’s behavior, as we
illustrated in Sect. II.

The before and after actions are written in a large
subset of C. Currently, this subset does not include certain
operators, but could easily be extended. after actions may
inspect the result of the original function via a predefined
result variable. The value of this variable is returned when
the action terminates; so after actions indicate their return
value by assigning to result, as illustrated in Fig. 1.

When stub code is split over two actions, local variables
declared in one are not in scope for the other. To work
around this issue, the component vs allows the declaration
of variables that are in scope of both actions of a stub.

IV. INSTRUMENTATION

This section explains how our framework instruments the
application under test to implement the injection strategy and
inject the stubs described by our DSL. We present solutions
for both unmanaged (assembly) and managed (.NET) code
and discuss some of the technical challenges involved.

A. Unmanaged code

Recall from Sect. II that our framework uses a custom
loader to instrument imported DLLs according to the stub
injection rules expressed in our DSL. To perform this instru-
mentation for unmanaged code, the custom loader creates
a copy of each target function, that is, each function that
matches a rule in the configuration for which the strategy
is different from none. We use an extension of the Detours

foo:
jmp foo_stub
; more instructions

foo_stub:
; push information about foo
call before_event
cmp eax, 1
je return

call foo_original

; push information about foo
call after_event

return:
ret

Figure 4: Instrumentation of unmanaged function foo.

library [8] for this purpose. The loader then instruments the
original version of the target function, while the copy is still
available and can be called from the stub.

Fig. 4 shows the instrumentation of a target function foo.
Its body is modified to start with a jump to a piece of
assembly code that evaluates the injection strategy and, if
required, executes the stub code. Modifying the code of the
target function allows us to handle all calls, including calls
that involve function aliases, function pointers, or pointer
arithmetic.

The assembly code (foo_stub in Fig. 4) is generated for
each target function. It stores information about the target
function foo and then calls the before_event function
of our framework. This function determines, based on the
previously stored information about foo and the injection
strategy of the rule, whether a stub should be injected. If so,
it interprets the code in the corresponding before action.
The return value of before_event determines whether the
before action replaces the original function or augments it.
In the former case, foo_stub terminates and the application
under test continues after the call to foo. In the latter
case, foo_stub calls the copy of the target function we
created earlier and then invokes the framework function
after_event to execute the after action, if required.

The actual code is more complicated than shown in Fig. 4.
For instance, it needs to pass along the result value of
the before action, handle the declaration of variables that
persist across the entire stub (component vs in Fig. 3),
and manage registers, the stack pointer, and any data on
the stack. We omit these technical details here and instead
discuss our solutions to three more interesting technical
challenges that arise in the context of unmanaged code.

Type information. When a rule targets multiple functions
(through a regular expression or wildcard in the patterns),
our framework needs to identify all DLL-exported functions
to be instrumented. DLL export tables contain all exported
symbols, but do not specify which symbols refer to functions

4

and which to variables. Hence, they are not sufficient to
determine where to apply the instrumentation.

Our framework provides two solutions to this problem.
If the debugging symbols are available, our framework can
precisely determine the exported functions of a DLL: an
address in a DLL export table is a function entry point if
and only if there exists a debugging symbol for a function
starting at the same address.

If debugging symbols are not available, we determine
the DLL-exported functions by consulting the DLL section
table. This table contains information about which address
ranges (or sections) contain executable code, read-write data,
and read-only data. This approach works well in practice,
although we have encountered a few DLLs in which the
executable sections also contain read-only data, such that
the instrumentation may corrupt data. In the absence of de-
bugging symbols, our framework requires the stub injection
rules to include parameter and result types of target functions
in order to determine the memory layout of the stack frame.

Heap isolation. Our framework allocates memory to main-
tain internal data structures such as counters, and also
permits stubs to allocate memory. This can lead to two
problems: First, when the memory allocated by the frame-
work and the memory allocated by the application are
interspersed, a buffer overflow in the application under test
is likely to corrupt the memory allocated by our framework.
As a result, testers observe behavior that they would not
see without instrumentation, which makes it difficult to
reproduce and debug the error.

Second, the heap is a shared resource and a lock must
be acquired for memory allocation. This lock is exposed to
applications and may, in combination with locks that are in-
troduced by our framework, lead to deadlocks. Both memory
corruptions and deadlocks occurred several times during our
experiments before we implemented the following solution.

We avoid both problems by providing internal rules that
redirect all memory allocation operations performed by our
framework to a separate, private heap. This private heap
has its own lock, which avoids deadlocks between our
framework and the application under test. We attempt to
keep a gap between the two heaps. This gap shrinks as
the application allocates more memory, and eventually there
may be a need for several such memory blocks, each for
the application and the framework. Nevertheless, there are
considerably fewer places where the heaps of the application
and of the framework are adjacent, which significantly
reduces the risk of corrupting the memory of the framework.

Code modification. As shown in Fig. 4, our framework
modifies the implementation of function foo by replacing
the first n bytes with an unconditional jump instruction
(for instance, n = 6 on 32bit Intel architectures). This
modification will handle calls to foo correctly, but may
lead to problems if the program tries to jump to an original

void foo(...) {
bool inject = Executor.mayInject("foo");
bool augment = false;

if (inject) {
augment = before_action();

}
if (augment) {

try {
// original function body of foo

} finally {
if (inject) {
after_action();

}
}

}
}

Figure 5: Instrumentation of managed function foo.

instruction at address foo+offset , where 1 ≤ offset < n.
Since these addresses no longer contain a valid instruction,
the processor triggers an “invalid instruction” exception and
switches to kernel mode. The kernel then dispatches the
exception back to the process.

To preserve the original behavior of the program, our
framework provides an internal rule for the exception dis-
patcher that undoes the instrumentation of function foo, sets
the injection strategy for foo to none to avoid the same
problem in the rest of the execution, and resumes execution
of the process at address foo+offset .

Before implementing this solution, we encountered this
problem multiple times on 64bit architectures, especially for
functions that contain loops early in the function body such
as some string functions.

B. Managed code

In the case of managed code, the loader of our framework
is notified of two kinds of events in the .NET virtual
machine. First, upon module loading, the loader retrieves
all target functions in the module. Since .NET bytecode is
typed, this step is simpler than for unmanaged code. Second,
before each of these functions is JIT-compiled, the executor
changes their in-memory bytecode representation through
the .NET Profiling API as shown in Fig. 5.

The call to Executor.mayInject evaluates the injection
strategy and yields whether a stub needs to be injected. If so,
we execute the before action. Its result indicates whether
the original function should be augmented or replaced. In
the former case, we execute the original function body and
the after action. The try-finally block ensures that
the after action is considered for all normal and abrupt
terminations of foo’s body.

As for unmanaged code, we simplified the presentation
by omitting several technicalities such as the handling of
result values. Note, however, that the technical challenges
discussed for unmanaged code do not apply to managed

5

code: the bytecode language is typed, which makes it easy
to identify functions, the automatic memory management
avoids problems with buffer overruns, and the structure of
the bytecode makes it easy to modify the function body.

V. EXPERIMENTAL EVALUATION

We evaluated our framework on several large applications.
To have a simple and unambiguous definition of success
and failure of a test, we focus on a specific kind of stub
here, namely stubs that inject faults. In the following, we
describe the design of our experiments, present their results,
and suggest a methodology for prioritizing the analysis of
crashes based on an indicator that predicts the effectiveness
of a stub injection rule in finding real bugs.

A. Design of experiments

Our experiments are defined by the applications under
test, the test scenarios to be executed, and the stub injection.
We describe these three aspects in the following.

Applications under test. We selected twelve widely used,
commercial applications (see first column in Tab. I). We
tested the latest version of all applications (at the time of
writing) on a machine running Windows 10.

Test scenarios. Our fault injection will focus on system calls
that request resources and access resources external to the
application under test such as the Windows registry. Many
such calls are made during the start-up of an application;
hence, we use the following simple steps as the test scenario
for most applications: start the application, wait a fixed
amount of time, and close it. Only the test scenario for
Microsoft Notepad was slightly more involved and included
selecting ‘File’ → ‘Open’ and then ‘Cancel’ in the file
browsing window (which appears for finding the file to
open).

Although our test scenarios are seemingly simple, they
were sufficient for injecting faults in thousands of calls and
detecting over 170 crashes (see Tab. I for more details).

Our framework allows one to express test scenarios in
XML, combine them with different configurations for stub
injection to obtain the concrete test cases, and then automat-
ically execute these test cases.

Stub injection rules. As we discussed in Sect. III, defining
a rule consists of determining the target functions, the
injection strategy, and the stub behavior.

Target functions. For our experiments, we focus on two
typical applications of stub testing: functions that request
new resources and functions that access resources external
to the application under test. To identify which functions
to instrument, we executed the test scenario for two of
the target applications (Microsoft Notepad and Notepad++,
selected at random) and used our framework to record all
function calls including their arguments and return values
(up to a certain number of pointer dereferences).

To identify functions that request resources, we con-
sidered those functions among the recorded ones whose
name contains the string create. We then consulted the
documentation for a random subset of these functions and
selected those that indeed request resources. We ended up
selecting eleven functions with this approach. An example
is CreateFile from kernelbase.dll, which creates or
opens a file or I/O device. This function might fail, for
instance, when access to the file or device is denied.

To identify functions that access external resources, we
considered those functions among the recorded ones that
returned different values for the same arguments across
at least two calls, that is, functions whose result de-
pends on some state. (We over-approximate the compari-
son of arguments, for instance, by dereferencing pointers
a fixed number of times.) Again, we consulted the doc-
umentation for a random subset of these functions and
selected those that access some external resource. In the
end, we selected 29 functions with this approach. An
example is function GetEnvironmentVariableW from
kernelbase.dll, which retrieves the content of an envi-
ronment variable. This content may change or the variables
may get undefined between two calls to this function.

Injection strategy. We defined five different injection
strategies, called NEVER, ALWAYS, EVERYOTHERCALL, ONCE,
and FIFTYFIFTY. The NEVER strategy never injects a fault to
a function call, and is used to check that our instrumentation
alone does not cause crashes in any of the applications we
consider. The ALWAYS strategy injects a fault every time
there is a call to a target function, the EVERYOTHERCALL

strategy injects a fault every other time there is a call to the
function, ONCE injects it only the first time there is a call,
and FIFTYFIFTY injects a fault with a 50% probability.

Stub behavior. Fault injection requires rather simple stubs,
which mostly return a value and typically set an error code
to specify what error occurred. We express these behaviors
through after actions in the stub injection rules because
for our target functions, the stub behavior is more faithful
to the actual behavior of the target function if we execute
the original function first (for instance, to fill a buffer) and
then simulate that an error occurred. In total, we provided 39
after and one before actions for the 40 target functions
we had selected.

When a system function fails in Windows, it typically
returns an error code between 1 and 15,999. Depending on
the error code, callers may handle each failure differently.
Therefore, to avoid spurious errors, it is crucial that our stubs
provide error codes which may actually occur. For each of
the 30 functions that sets an error code, we consulted the
Microsoft Developer Network (MSDN) and Stack Overflow
for error codes that have occurred in real situations.

For (the remaining ten) functions that access external
resources, we consulted the documentation to identify pos-

6

sible faults and corner cases. For instance, the stub for
GetSystemTime calls the original function and then sets
the date to February 29 in a leap year, a corner case that has
caused failures in Zune and Azure in the past. In many other
cases, the stub returns NULL to indicate that the resource
cannot be accessed.

In summary, we defined 200 rules (40 target functions
x 5 injection strategies) based on only two of the twelve
target applications. We then applied each of these rules (in
isolation) to every target application, for a total of 2,400
runs (200 rules x 12 applications).

B. Results: Detecting crashes

Tab. I reports the results of our experiments. The first
column of the table shows the application, the second
column the injection strategy, the third column the number
of crashes found in each application per injection strategy,
the fourth column shows the number of applied rules (that
is, the number of target functions that are called at least
once), the fifth column shows the number of instrumented
calls, and the last column the number of these calls in which
a stub was injected. Note that each table row shows the sum
for the 40 test runs per injection strategy.

The data shows that for ten out of the twelve target
applications (all but Microsoft OneNote Launcher and Mi-
crosoft Paint), our simple test scenario executes thousands of
instrumented calls, indicating that we are not testing shallow
execution paths.

The run for the baseline strategy NEVER (not shown in
the table) did not produce any crashes, which demonstrates
that our instrumentation is reliable.

Comparing injection strategies. All injection strategies
detected crashes, although the effectiveness differs between
strategies. Across all target applications, the ALWAYS strategy
detects the most crashes, a total of 62, followed by strategies
FIFTYFIFTY and EVERYOTHERCALL, which detect 52 and 51
crashes, respectively. The ONCE strategy detects the fewest
crashes, a total of 11, which is to be expected as it injects
faults in the smallest number of calls.

Even though ALWAYS is overall the most effective strategy,
it is useful to be able to define and apply different strategies.
In the following we give two examples.

First, for the same program execution (that is, for the
same set of instrumented calls), the ALWAYS strategy will
inject more stubs than FIFTYFIFTY and EVERYOTHERCALL.
Nevertheless, there are four applications in our experiments
(PowerPoint, Publisher, Visio, and Notepad++), for which
ALWAYS injects significantly fewer stubs than the other two
strategies. A likely explanation is that for these applications,
FIFTYFIFTY and EVERYOTHERCALL explore deeper paths
and, therefore, encounter more calls to the target function.
Hence, these strategies have the potential to reveal deeper
errors.

Second, the ONCE strategy produces by far the most
crashes per 1,000 injected stubs (over 50, compared to at
most 1.5 for the other three strategies). This suggests that
the first call to a target function is particularly effective in
detecting problems in error handling code. This strategy is
therefore useful to reveal such problems in executions that
are shorter and, thus, easier to debug than executions that
crash at a later call to the target function.

Uniqueness of crashes. To determine whether the crashes
found with different injection strategies overlap, we manu-
ally inspected all detected crashes in Notepad and Visio.

The total number of crashes in Notepad across injection
strategies is eight, as shown in Tab. I. By inspecting these
eight crash sites with a debugger, we found that six of them
are unique. There were two duplicate crash sites between
strategies EVERYOTHERCALL and FIFTYFIFTY. One of them
was caused by injecting faults in the exact same calls for
both strategies.

By inspecting the 23 crash sites for Visio, we found that
there are two duplicates, one between strategies ALWAYS

and FIFTYFIFTY and one between EVERYOTHERCALL and
FIFTYFIFTY. Both of these were due to the fact that faults
were injected in the exact same calls by the two strategies.

This analysis provides another indication that it is indeed
useful to apply different stub injection strategies because
they are likely to produce different crashes. Different crash
sites of course do not imply that the different crashes are
caused by different bugs. Nevertheless, having few duplicate
crash sites reduces the debugging effort considerably.

Rules triggering crashes. As we described in the exper-
imental setup, we selected 40 target functions based on
the test executions of two applications and then applied
the resulting rules to all twelve applications. Across all
applications, crashes were detected by applying 19 rules with
the ALWAYS strategy, 16 with the EVERYOTHERCALL and
FIFTYFIFTY strategies, and 6 with the ONCE strategy. Note
that the functions targeted by the 19 rules of the ALWAYS

strategy do not subsume those of the other strategies. For
instance, a rule does not lead to any crashes with the ALWAYS

strategy if the first call of the target function terminates the
program normally; FIFTYFIFTY might not inject a stub for
that call and then crash on a later call. Overall, injecting
faults in 15 target functions (out of 40) did not lead to any
crashes with any strategy, while injecting faults in the other
25 led to some crash with some strategy.

Performance overhead. The runtime and memory overhead
of our framework depends on three factors: (1) the number
of loaded DLLs that we instrument, (2) the injection strategy,
which determines how often stubs are executed, and (3) how
computationally expensive the stubs are. In our experiments,
we instrumented only one function per test run, and all
of our stubs were computationally cheap, so the overall
performance overhead was negligible.

7

Application Injection strategy Crashes Applied rules Instrumented calls Stubbed calls
Internet Explorer ALWAYS 2 30 1,364 1,364

EVERYOTHERCALL 3 30 1,537 775
ONCE 0 31 3,363 31
FIFTYFIFTY 2 29 1,434 708

Microsoft Excel ALWAYS 4 7 1,643 1,643
EVERYOTHERCALL 5 6 769 387
ONCE 1 6 9,316 6
FIFTYFIFTY 3 7 1,335 650

Microsoft Notepad ALWAYS 1 25 38,499 38,499
EVERYOTHERCALL 4 31 13,143 6,580
ONCE 0 31 34,207 31
FIFTYFIFTY 3 31 10,256 4,997

Microsoft OneNote Launcher ALWAYS 1 13 106 106
EVERYOTHERCALL 1 13 101 55
ONCE 1 13 156 13
FIFTYFIFTY 1 13 105 55

Microsoft Outlook ALWAYS 8 19 2,686 2,686
EVERYOTHERCALL 6 17 1,369 690
ONCE 2 16 21,203 16
FIFTYFIFTY 8 14 1,309 648

Microsoft Paint ALWAYS 0 0 0 0
EVERYOTHERCALL 0 0 0 0
ONCE 0 0 0 0
FIFTYFIFTY 0 0 0 0

Microsoft PowerPoint ALWAYS 9 28 5,029 5,029
EVERYOTHERCALL 7 27 2,950 1,481
ONCE 2 28 31,677 28
FIFTYFIFTY 7 28 16,074 7,827

Microsoft Publisher ALWAYS 7 18 1,883 1,883
EVERYOTHERCALL 4 20 13,758 6,885
ONCE 1 20 21,522 20
FIFTYFIFTY 5 23 5,177 2,532

Microsoft Visio ALWAYS 10 26 1,646 1,646
EVERYOTHERCALL 6 27 3,176 1,595
ONCE 0 28 23,255 28
FIFTYFIFTY 7 30 8,440 4,126

Microsoft Word ALWAYS 14 29 17,906 17,906
EVERYOTHERCALL 9 28 25,550 12,784
ONCE 2 29 32,630 29
FIFTYFIFTY 8 28 18,122 8,904

Notepad++ ALWAYS 0 8 149 149
EVERYOTHERCALL 0 13 1,883 945
ONCE 0 6 73 6
FIFTYFIFTY 0 14 3,965 1,942

Skype for Business ALWAYS 6 12 2,413 2,413
EVERYOTHERCALL 6 12 2,126 1,066
ONCE 2 11 4,290 11
FIFTYFIFTY 8 19 2,976 1,446

Total 176 132 390,571 140,621

Table I: The results of our experiments.

C. Results: From crashes to bugs

The crashes found with our framework are real bugs
only if the stubs simulate behaviors that are realistic in
practice. The fact that our stub injection rules are reusable
across applications enables one to derive a measure for the
effectiveness of a rule and use it both to identify unrealistic
stub behaviors and to prioritize crashes, during the analysis
of test results, that are more likely to occur in practice.

We propose the following heuristic for predicting the
effectiveness in detecting real bugs of stub injection rules.
For each target function fi and each stub defined for fi, we
compute the following real-bug indicator across all injection
strategies and applications:

rbi i = 1− number of crashes by stubbing fi
number of stubbed calls to fi

The indicator rbi i predicts the likelihood of detecting real
bugs when injecting the given stub in function fi. A low
value occurs if most stubbed calls lead to a crash. That is,
most applications do not handle the stub behavior correctly,
thus making it more likely that this behavior cannot occur in
practice; otherwise, we would expect more callers to handle
it correctly. Conversely, a high value occurs if relatively few
stubbed calls lead to a crash. In this case, we conclude that
it is possible to handle the injected stub behavior correctly,
such that failing to do so is most likely a real bug.

8

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

rb
i i

fi

Figure 6: The real-bug indicators rbi i for the 25 target
functions fi that lead to crashes.

We propose to calibrate the real-bug indicators for a
set of rules by computing them for each combination of
target function and stub across a set of applications and
injection strategies. The results can then be used in three
ways: First, rules with a low indicator should be reviewed
and, if necessary, revised. Second, when the tests for an
application produce more crashes than the developers can
analyze, priority should be given to those that were produced
by rules with a high real-bug indicator because they are more
likely to reveal real bugs. Third, when the available testing
time for a new application (one that was not used during
calibration) does not allow one to apply all available rules,
testers should choose those that have a high indicator and
have produced at least one crash during calibration (that
is, the indicator is not trivially 100%, which could also be
achieved by a stub that just calls the original function).
Indicators in our experiments. In our experiments, 25 out
of 40 rules led to a crash for at least one application and
injection strategy. Fig. 6 shows the real-bug indicator rbi i
on the y-axis for each of these 25 target functions fi (in
decreasing order). The indicators are high: between 99.98%
and 80%. The indicator for the remaining 15 target functions
is 100% since they did not lead to any crashes even though
stubs were injected; we omitted those in Fig. 6.

The high indicators for our target functions are not sur-
prising, given how diligently we defined the stubs. Conse-
quently, stubbed calls to these functions are handled cor-
rectly at most call sites in our experiments. As an example,
we present below a bug found in Excel, where fault injection
in one of the target functions leads to a crash only 17 times
out of 6,940. These “statistical outlier crashes” point to client
code where a realistic fault is not handled correctly.

Computing the real-bug indicators per application can
give an indication of how robust an application is against a
set of rules. For example, Notepad is more robust against our
set of rules than Excel, as it crashed fewer times even though

1 for (int c = 0; c < 2; c++) {
2 error = RegQueryValueEx(key, /* ... */,
3 buffer, &buffer_size);
4 if (ERROR_SUCCESS == error) {
5 value_ptr = buffer;
6 break;
7 }
8 else if (ERROR_MORE_DATA == error) {
9 buffer.resize(buffer_size)

10 }
11 }
12 Assert(error == ERROR_SUCCESS);

Figure 7: Snippet of code from Microsoft Excel.

there are many more stubbed calls across all strategies. In
our experiments, Notepad++ was the most robust of all, since
it never crashed for any strategy, even though we do inject
faults. Therefore, there exists at least one target application
that is robust to this subset of applied rules.

Example of a real bug found. We manually inspected many
crashes found during our experiments, starting with those
due to rules with high real-bug indicators rbi i. Here, we
present a sample bug found during this analysis. Note that
the bug in Microsoft Notepad described in Sect. II was also
found during our experiments.

Function RegQueryValueEx from advapi32.dll re-
trieves and stores the data associated with a specified registry
key in a given buffer. If the buffer is not large enough to
hold the data, which can be of arbitrary length, the function
returns ERROR_MORE_DATA. In this case, the required buffer
size is stored in a variable and the contents of the buffer are
undefined. For our experiments, we wrote a rule that simu-
lates this behavior (the rule with the sixth highest real-bug
indicator in Fig. 6). When successful, RegQueryValueEx
returns ERROR_SUCCESS.

Fig. 7 shows a snippet of code from Microsoft Excel
containing a call to RegQueryValueEx (lines 2–3). When
the function returns successfully, value_ptr is initialized
to point to the contents of the buffer (lines 4–5). If, how-
ever, the function returns ERROR_MORE_DATA, the buffer is
resized to fit the data (lines 8–9). This logic is retried twice
in a loop (line 1), although it might take more than two tries
to succeed. In other words, this code incorrectly assumes
that the data associated with the registry key key will not
be modified between the two calls to RegQueryValueEx.

The assertion on line 12 (which is a part of the actual im-
plementation) makes this assumption even more explicit by
aborting the application when the data has not been success-
fully retrieved after the loop. However, this assertion is not
present in release code, which may thus have unpredictable
behavior when more than two tries are required. Indeed,
when testing Excel with the rule for RegQueryValueEx

and the ALWAYS strategy, an access violation occurs when
value_ptr is dereferenced much later in the code.

9

1 thread last_key -> void*;
2 thread counter -> int;
3

4 rule ADVAPI32.dll!RegQueryValueEx(hKey,
5 /* ... */, lpData, lpcbData)
6 before {
7 if (last_key != hKey) {
8 last_key = hKey;
9 counter = 0;

10 } else {
11 counter++;
12 }
13 }
14 after {
15 if (counter < 2) {
16 (*lpcbData)++;
17 SetLastError(ERROR_MORE_DATA);
18 result = ERROR_MORE_DATA;
19 }
20 }

Figure 8: Stub injection rule for RegQueryValueEx.

The rule is shown in Fig. 8. We use two thread-local
variables to simulate that the buffer was not large enough to
hold the data associated with a specific key for the first and
second call. Note that our framework would also allow one
to define a rule that tracks the number of calls per key (by
maintaining a global map from keys to counter values).

VI. RELATED WORK

As we discussed in the introduction, frameworks for
writing stubs, fakes, or mocks [1], [3], [4], [5] typically
target a particular programming language, which prohibits
reuse of stub code across multiple languages. In contrast,
our framework injects stubs by dynamically altering an
executable program, independently of its source language.

Frameworks that automate stub injection are usually tied
to a particular runtime environment, like Detours [8] for
unmanaged code, Moles [9] for .NET, and Javassist [10]
for Java. We build upon and extend Detours and the .NET
Profiling API to support automatic stub injection for both
managed and unmanaged code. Moreover, our framework
provides support for the process of writing stubs and inject-
ing them in an application under test from start to finish.

Error handling code is notoriously poorly tested and has
been targeted by numerous fault injection techniques. In
general, software-implemented fault injection [12] comprises
three categories [13]. (1) Data error injection [14], [15], [16]
performs low-level data corruption, like bit-flips in memory.
(2) Techniques that inject code changes [17] either simu-
late faulty instruction decoding or common error patterns.
(3) Interface error injection corrupts values passed between
two modules, like a library and its client. However, many
prominent approaches in this category [18], [19], [7] often
focus on testing the robustness of the callee, e.g., a library or
the kernel. In contrast to these, the LFI framework [6] aims

at finding bugs in clients due to imperfect documentation of
libraries. Although our framework can also be used to per-
form fault injection, its purpose is much more general. Any
code may be injected to augment or replace the functionality
of a call.

Error handling code has also been targeted by various
static analyses [20], [21], [22]. In contrast to that work, our
purely dynamic approach does not report any false positives
as long as the defined stub behaviors are realistic. Moreover,
the detected crashes are reproducible and can be examined
using standard debuggers.

A core originality of our approach is a domain specific
language for expressing the behavior of stubs as well as
injection strategies. In comparison to related work [2], [6],
our DSL is more human-readable, flexible, and expressive.
Although we do not infer the stubs, there is related work that
infers what faults to inject as well as error specifications [6],
[23], [24]. We compensate by supporting reusable stubs and
avoid any spurious errors due to inference by pushing the
responsibility to write realistic stubs to the user.

Our statistical methodology to identify crashes that are
more likely to point to real bugs is inspired by Engler et
al. [11] and follow-up work on specification mining and
program repair [25]. Their work applies to classes of bugs
broader than those considered in Sect. V. However, our more
limited scope and dynamic approach allowed us to define a
simple formula for determining the real-bug indicator rbii.
This formula is also easy to compute automatically (unlike
for instance LFI’s estimate [6], which requires manual code
inspection to determine false positives and negatives).

VII. CONCLUDING REMARKS

In this paper, we introduced a general framework for
dynamic stub injection. Our framework provides an expres-
sive DSL for writing stub injection rules and implements
a novel technique for dynamically injecting the specified
stubs into both managed and unmanaged binaries. In an
extensive evaluation of several mature applications, we used
our framework to perform fault injection, and discovered
over 170 crashes. To prioritize the analysis of these crashes,
we devised an indicator that predicts the effectiveness of
stub injection rules in finding real bugs.

A promising direction for future work is to develop
debugging support on top of our framework. For instance,
debugging a crash caused by a stub injection might benefit
from inspecting other calls that handle the same stub cor-
rectly. Given that our framework can automatically produce
large numbers of correct and faulty executions, one could
also try to learn a (likely) program repair automatically.
Moreover, since an application might fail long after a
stubbed call, it would be useful to provide automatic support
for determining the root cause of a crash, for instance, by
comparing faulty and correct traces [26].

10

REFERENCES

[1] T. Mackinnon, S. Freeman, and P. Craig, “Endo-testing: Unit
testing with mock objects,” 2000.

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J. Loingtier, and J. Irwin, “Aspect-oriented program-
ming,” in ECOOP, ser. LNCS, vol. 1241. Springer, 1997,
pp. 220–242.

[3] “JMock,” http://www.jmock.org/.

[4] “EasyMock,” http://easymock.org/.

[5] “Moq,” https://github.com/moq/moq4.

[6] P. D. Marinescu and G. Candea, “LFI: A practical and general
library-level fault injector,” in DSN. IEEE Computer Society,
2009, pp. 379–388.

[7] E. Martins, C. M. F. Rubira, and N. G. M. Leme, “Jaca:
A reflective fault injection tool based on patterns,” in DSN.
IEEE Computer Society, 2002, pp. 483–482.

[8] G. Hunt and D. Brubacher, “Detours: Binary interception of
Win32 functions,” in Windows NT Symposium. USENIX,
1999.

[9] N. Tillmann and J. de Halleux, “Moles: Tool-assisted envi-
ronment isolation with closures,” in TOOLS, ser. LNCS, vol.
6141. Springer, 2010, pp. 253–270.

[10] “Javassist,” http://www.javassist.org.

[11] D. R. Engler, D. Y. Chen, and A. Chou, “Bugs as deviant
behavior: A general approach to inferring errors in systems
code,” in SOSP. ACM, 2001, pp. 57–72.

[12] H. Madeira, D. Costa, and M. Vieira, “On the emulation of
software faults by software fault injection,” in DSN. IEEE
Computer Society, 2000, pp. 417–426.

[13] D. Cotroneo, A. Lanzaro, R. Natella, and R. Barbosa, “Ex-
perimental analysis of binary-level software fault injection in
complex software,” in EDCC. IEEE Computer Society, 2012,
pp. 162–172.

[14] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “FER-
RARI: A flexible software-based fault and error injection
system,” TC, vol. 44, pp. 248–260, 1995.

[15] J. Carreira, H. Madeira, and J. G. Silva, “Xception: A
technique for the experimental evaluation of dependability in
modern computers,” TSE, vol. 24, pp. 125–136, 1998.

[16] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson,
“GOOFI: Generic object-oriented fault injection tool,” in
DSN. IEEE Computer Society, 2001, pp. 83–88.

[17] J. Durães and H. Madeira, “Emulation of software faults: A
field data study and a practical approach,” TSE, vol. 32, pp.
849–867, 2006.

[18] M. Rodrı́guez, F. Salles, J. Fabre, and J. Arlat, “MAFALDA:
Microkernel assessment by fault injection and design aid,” in
EDCC. IEEE Computer Society, 1999, pp. 143–160.

[19] P. Koopman and J. DeVale, “The exception handling effective-
ness of POSIX operating systems,” TSE, vol. 26, pp. 837–848,
2000.

[20] J. Condit, M. Harren, Z. R. Anderson, D. Gay, and G. C.
Necula, “Dependent types for low-level programming,” in
ESOP, ser. LNCS, vol. 4421. Springer, 2007, pp. 520–535.

[21] C. Rubio-González, H. S. Gunawi, B. Liblit, R. H. Arpaci-
Dusseau, and A. C. Arpaci-Dusseau, “Error propagation anal-
ysis for file systems,” in PLDI. ACM, 2009, pp. 270–280.

[22] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao,
Y. Zhang, P. Jain, and M. Stumm, “Simple testing can prevent
most critical failures: An analysis of production failures in
distributed data-intensive systems,” in OSDI. USENIX, 2014,
pp. 249–265.

[23] M. Acharya and T. Xie, “Mining API error-handling speci-
fications from source code,” in FASE, ser. LNCS, vol. 5503.
Springer, 2009, pp. 370–384.

[24] S. Jana, Y. Kang, S. Roth, and B. Ray, “Automatically
detecting error handling bugs using error specifications,” in
Security. USENIX, 2016, pp. 345–362.

[25] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli,
and P. T. Devanbu, “On the “naturalness” of buggy code,” in
ICSE. ACM, 2016, pp. 428–439.

[26] T. Ball, M. Naik, and S. K. Rajamani, “From symptom to
cause: Localizing errors in counterexample traces,” in POPL.
ACM, 2003, pp. 97–105.

11

