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On Narrowing the Gap between
Verification and Systematic Testing
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Abstract: Our work on narrowing the gap between verification and systematic testing
has two directions: (1) complementing verification with systematic testing, and
(2) pushing systematic testing toward reaching verification. In the first direction, we
explore how to effectively combine static analysis with systematic testing, so as to guide
test generation toward properties that have not been previously checked by a static
analyzer in a sound way. This combination significantly reduces the test effort while
checking more unverified properties. In the second direction, we push systematic testing
toward checking as many executions as possible of a real and complex image parser, so
as to prove the absence of a certain class of errors. This verification attempt required no
static analysis or source code annotations; our purely dynamic techniques targeted the
verification of the parser implementation, including complicated assembly patterns that
most static analyses cannot handle.
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1 Introduction

Software systems are ubiquitous in modern life. Their
robustness and reliability is, therefore, vital in our so-
ciety and constitutes a primary goal of the computer-
science community. Formal verification and automated
systematic testing are two fundamental research areas of
computer science, aiming to ensure software correctness
and identify code issues as early as possible.

Verification has been studied for approximately five de-
cades and is increasingly applied in industrial software
development to detect errors. Verification techniques al-
low developers to prove that a program satisfies a set
of desired properties, for instance, the absence of runti-
me errors. So far, verification tools have been so effecti-
ve in detecting errors in real-world programs that they
are increasingly and routinely used in many software
development organizations. In fact, there is a wide va-
riety of such tools, targeting mainstream programming
languages and ranging from relatively simple heuristic
tools [2], over abstract interpreters [20] and software mo-
del checkers [3, 5], to verifiers based on automatic theo-
rem proving [23, 4].

Over the last ten years, there has been revived interest

in systematic testing, and in particular, in testing tech-
niques that rely on symbolic execution [29], introduced
more than three decades ago [25, 9, 10]. Recent signifi-
cant advances in constraint satisfiability and the scala-
bility of simultaneous concrete and symbolic executions
have brought systematic dynamic test generation [26, 7]
to the spotlight, especially due to its ability to achie-
ve high code coverage and detect errors deep in large
and complex programs. As a result, dynamic test gene-
ration is having a major impact on many research areas
of computer science, for instance, on software enginee-
ring, security, computer systems, debugging and repair,
networks, and education.

Sound software verification over-approximates the set
of possible program executions, as shown in Fig. 1, to
prove the absence of errors in a program. Due to this
over-approximation, sound verification typically genera-
tes spurious warnings about executions that are not er-
roneous, or even possible, in a program, thus, making
it difficult to identify any real errors in the code. Sy-
stematic testing, on the other hand, typically under-
approximates the set of possible program executions
with the purpose of proving the existence of errors in
the program [28]. As a result, systematic testing typi-
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Figure 1: Sound verification over-approximates the set of all
possible program executions, whereas systematic testing typi-
cally under-approximates this set.

cally misses errors in the code. Our work on narrowing
this gap between software verification and systematic te-
sting [11] focuses on two directions: (1) complementing
verification with systematic testing, and (2) pushing sy-
stematic testing toward verification.

In the first direction, we complement verification (or sta-
tic analysis) with systematic testing, to maximize soft-
ware quality while reducing the test effort. In particular,
we precisely define the correctness guarantees that veri-
fiers provide, such that they can be effectively compen-
sated for by dynamic test generation. At the same time,
we enhance systematic testing techniques with better
oracles, and enable these techniques to consider factors
that affect the outcome of such oracles but were pre-
viously ignored. This research direction enables the de-
tection of more software errors, earlier in the develop-
ment process, and with fewer resources.

In the second direction, we explore how far systematic
testing can be pushed toward reaching verification of
real applications. Specifically, we assess to what extent
the idea of reaching verification with systematic testing
is realistic, in the scope of a particular application do-
main, namely, that of binary image parsers. This rese-
arch direction sheds light to the potential of dynamic
test generation in ensuring software correctness.

2 Complementing Verification with
Systematic Testing

Modern software projects use a variety of unsound sta-
tic program analysis techniques to detect errors, most
of which do not check all possible executions of a pro-
gram, as shown in Fig. 2. For instance, such techniques
often fail to verify certain program properties (due to
the complexity of these properties), or they verify so-
me program paths under unsound assumptions (such as
the absence of arithmetic overflow), which simplify the
analysis but might not hold for all executions.

Making such assumptions is customary in static ana-
lysis to improve the precision (i.e., number of spurious
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Figure 2: Unsound verification typically neither over-
approximates nor under-approximates the set of all possible
program executions.

warnings), performance, and automation of the analysis,
and because some program features simply elude static
checking [30]. That is, most practical static analyses sa-
crifice soundness in favor of other important qualities.

Despite these compromises, static analyzers find real er-
rors in real code. However, as a result of these com-
promises, it is not clear what guarantees a static ana-
lysis actually provides about program correctness. This
means that users who are not familiar with an analyzer’s
implicit compromises do not know how to interpret the
absence of warnings about their code. It is also not cle-
ar how to use systematic testing to check exactly those
properties that are not soundly verified by a static ana-
lysis. Consequently, software engineers need to test their
programs as if no static analysis were applied, which is
inefficient and requires large test suites.

Until our work, various approaches had combined verifi-
cation and testing [21, 22, 24], but mainly to determine
whether a warning emitted by a verifier is a false positi-
ve. However, these approaches do not take into account
that unsound static analyses might generate false nega-
tives (that is, they might miss errors), and therefore, do
not address compromises of verifiers. In other words, te-
sting aims to target only program executions for which
a verification warning has been emitted, thus ignoring
executions that have not been previously checked by a
static analyzer due to its unsoundness. This is shown
by the shaded area in Fig. 3 representing the executions
that were not statically proven correct and are targeted
by testing.

To address this problem, we developed a technique for
combining verification and systematic testing, which
guides the latter not only toward program executions for
which a verification warning has been emitted, but also
toward executions that unsound verification has missed.
The program executions that systematic testing aims
to cover with our technique are depicted by the shaded
areas in Fig. 4.

In particular, we proposed a tool architecture, presen-
ted in Fig. 5, that (1) combines multiple, complementary
static analyzers that check different properties and ma-
ke different unsound assumptions, and (2) complements
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Figure 3: In existing work, systematic testing targets only those
program executions for which a static verification warning has
been emitted (shaded area), thus ignoring the executions that
unsound verification has missed.

static analysis with systematic test generation to cover
those properties that have not been checked statically.

The first stage of the architecture allows the user to run
an arbitrary number (possibly zero) of static analyzers.
An analyzer reads the program, which might also con-
tain results of prior static analysis attempts, and tries to
verify any properties that have not already been proven
by upstream tools. Each analyzer also records its verifi-
cation results in the program, which serves as input to
the next downstream tool. The intermediate versions of
the program precisely track which properties have been
fully verified and which remain to be validated.

In the second stage, we apply dynamic test generation to
automatically generate test cases from the program and
the results of static analysis. In particular, the proper-
ties that remain to be checked as well as the assumptions
made by static analyzers occur, in the form of runtime
checks, in an instrumented version of the program. The
resulting instrumented program can then be fed to one
or more test generation tools. Our instrumentation cau-
ses the symbolic execution of these tools to generate the
constraints and test data that exercise exactly the pro-
perties that have not been statically verified (in a sound
way), thus reducing the size of the generated test suites.

A key originality of this tool architecture is that it makes
explicit which properties have been checked statically
and under which assumptions. Therefore, the correct-
ness guarantees provided by static analyzers are docu-
mented precisely, and can guide dynamic test genera-
tion toward those properties that are not verified yet,
leading to smaller and more effective test suites. These
test suites will consist of a series of successful test cases
that will boost the user’s confidence about the correct-
ness of their programs or concrete counterexamples that
reproduce an error. Moreover, by automatically genera-
ting tests from the explicit verification results of static
analyzers, our technique makes the degree of static ana-
lysis configurable; it may range from zero to complete.
This allows developers to stop the static verification cy-
cle at any time, which is important in practice, where
the effort that a developer can devote to static analysis
is limited.

In my work…
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Figure 4: In our work, systematic testing targets those program
executions for which a verification warning has been emitted
as well as those that unsound verification has missed (shaded
areas).

By developing this architecture, we investigated the fol-
lowing scientific topics:

How to design an annotation language that supports both
verification and systematic testing [16]. The main virtu-
es of our annotations are that they are simple and easy
to support by a wide range of static and dynamic tools,
expressive, and well suited for test generation.

What the compromises of mainstream verifiers are and
how to make these compromises explicit [18]. We used
our annotations to encode typical compromises made
by deductive verifiers. We also encoded most soundness
compromises in a widely used, commercial static analy-
zer. We measured the impact of its unsound assumpti-
ons on several open-source projects, which constituted
the first systematic effort to document and evaluate the
sources of unsoundness in an analyzer. These results can
guide users of static analyzers in using them fruitfully,
for instance, in deciding how to complement static ana-
lysis with testing, and assist designers of static analyzers
in finding good trade-offs for their tools.

How to combine verification and systematic testing to
maximize code quality and minimize the test effort. We
presented a technique for effectively reducing redundan-
cies with static analysis when complementing its veri-
fication results by test generation [19]. Our main con-
tribution is a code instrumentation that causes test ge-
neration to abort tests that lead to verified executions,
prune parts of the search space, and prioritize tests that
lead to unverified executions. To increase the usability
of our technique, we also extended the IDE of a known
verifier to seamlessly integrate test generation, among
other approaches, for diagnosing verification errors [15].
We investigated how to present the results of these ap-
proaches in the IDE without overwhelming the user with
too much information.

How to generate tests for program properties that are
difficult to verify and lie beyond the capabilities of syste-
matic testing [12, 17]. We proposed approaches for ef-
ficiently generating test oracles (in the form of runtime
checks) for rich properties that are difficult to statically
verify, and test inputs for thoroughly evaluating these
oracles.
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Figure 5: Tool architecture for complementing static verifica-
tion with systematic testing.

3 Pushing Systematic Testing Toward
Verification

Systematic dynamic test generation has been imple-
mented in many popular tools over the last deca-
de [8, 31, 27, 33, 6, 32, 1]. Although effective in detec-
ting program errors, such testing tools have never been
pushed toward proving that a large and complex appli-
cation is free of certain classes of errors. In this research
direction, we assess to what extent reaching verification
with systematic testing is feasible in practice in the sco-
pe of binary image parsers, that is, we assess whether
Fig. 6 is realistic. Specifically, we used and enhanced
systematic dynamic test generation to get closer to pro-
ving memory safety of the ANI Windows image parser.

The ANI parser is responsible for processing structured
graphics files in order to display “ANImated” cursors
and icons. Such animated icons are ubiquitous in prac-
tice (like the spinning ring or hourglass on Windows),
and their domain of use ranges from web pages, instant
messaging, and e-mails, to presentations and videos. The
choice of this parser was motivated by the fact that in
2007 a critical out-of-band security patch was released
for code in this parser costing Microsoft and its users
millions of dollars. The ANI parser is included in all
distributions of Windows, that is, used on more than a
billion PCs, and has been tested for years. Given the
ubiquity of animated icons, our goal was to determine
whether the ANI parser is now free of security-critical
errors.

In the context of this parser, we showed how systematic
dynamic test generation can be applied, extended, and
automated toward program verification. This was the
first application of dynamic test generation to verify as
many executions as possible of a real, complex, security-
critical program, and more importantly, the first att-
empt to prove that an operating-system (Windows or
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Figure 6: Assessing whether it is realistic to push systematic
testing to cover all possible program executions.

other) image parser is free of security-critical errors. We
are also not aware of any past attempts at verification
without using any static analysis. All the techniques and
tools used in this work were exclusively dynamic, thus
seeking verification of the execution of the parser, in-
cluding complicated assembly code patterns that most
static analysis tools cannot handle. During this verifi-
cation process, we found several security vulnerabilities
in the parser, which have been fixed in the latest Win-
dows versions. Overall, when excluding the code parts
that were actually memory unsafe, we were able to pro-
ve that the ANI parser is memory safe, that is, free of
any buffer-overflow security vulnerabilities, modulo the
soundness of our tools and a few additional assumptions
that we had to make [14].

These results required a high level of automation in our
tools and verification process although a few key steps
were performed manually. To achieve further automati-
on, we then devised a new compositional test strategy
for automatically and dynamically decomposing large
programs such that code coverage and error detection
are increased in significantly less testing time in compa-
rison to the state-of-art test strategy used in production
at Microsoft [13].

4 Conclusion

My vision for the future is to enable developers to rely
on and benefit from a wide range of tools and techni-
ques that improve their development workflow as well
as the quality of their software. This cannot be achieved
by simply providing developers with yet another tool. I
plan to continue leveraging both novel and existing tech-
niques, such that they complement each other symbio-
tically, to streamline the software development process
and alleviate its bottlenecks, such as bug finding, manu-
ally augmenting test suites, or code reviewing. I consider
our work until now a first milestone in this journey.
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