
Dependency-Aware Metamorphic Testing of Datalog Engines
Muhammad Numair Mansur

numair@mpi-sws.org

MPI-SWS

Germany

Valentin Wüstholz

valentin.wustholz@consensys.net

ConsenSys

Austria

Maria Christakis

maria.christakis@tuwien.ac.at

TU Wien

Austria

ABSTRACT

Datalog is a declarative query language with wide applicability,

especially in program analysis. Queries are evaluated by Datalog

engines, which are complex and thus prone to returning incorrect

results. Such bugs, called query bugs, may compromise the sound-

ness of upstream program analyzers, having potentially detrimental

consequences in safety-critical settings.

To address this issue, we develop a metamorphic testing ap-

proach for detecting query bugs in Datalog engines. In comparison

to existing work, our approach is based on rich precedence informa-

tion capturing dependencies among relations in the program. This

enables much more general and effective metamorphic transforma-

tions. We implement our approach in DLSmith, which detected 16

previously unknown query bugs in four Datalog engines.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging.

KEYWORDS

Datalog, metamorphic testing, fuzzing

ACM Reference Format:

Muhammad Numair Mansur, ValentinWüstholz, and Maria Christakis. 2023.

Dependency-AwareMetamorphic Testing of Datalog Engines. In Proceedings
of the 32nd ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA ’23), July 17–21, 2023, Seattle, WA, USA. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3597926.3598052

1 INTRODUCTION

Datalog [20] is a declarative query language, which, at its core,

is based on a decidable fragment of first-order logic. Due to its

simplicity and expressiveness, a wide range of applications have

been implemented using Datalog, including static analyzers for

Java [6, 38], a parallelizing compiler framework [16], a binary disas-

sembler [18], and security checkers for smart contracts [7, 19, 51],

to name a few.

Queries are evaluated by Datalog engines, such as Soufflé [24],

bddbddb [53], and DDlog [44]. Such engines are complex, especially

since they typically employ advanced query transformation, opti-

mization, and compilation techniques to improve their performance

and scalability. As a result of this complexity, Datalog engines are

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0221-1/23/07.

https://doi.org/10.1145/3597926.3598052

prone to query bugs [34]. A query bug causes the engine to return

incorrect results that, for example, contain more, fewer, or different

entries than they should. These bugs are severe—they may compro-

mise the soundness of an upstream program analyzer, leading to

catastrophic consequences in safety-critical settings.

It is, therefore, critical to develop automatic validation techniques

for detecting query bugs in Datalog engines. Finding such bugs,

however, is impossible without an oracle, that is, a specification

of the expected results. Differential testing [36] is a test generation

technique that would overcome the oracle problem by running mul-

tiple Datalog engines on the same input programs and looking for

disagreement in the results. Nevertheless, there is no unified syntax

for Datalog, and each engine understands a (very) different dialect;

for instance, Soufflé enables large-scale, logic-oriented program-

ming, whereas Formulog [4] provides support for constructing and

reasoning about SMT formulas.

Metamorphic testing [15] is another test generation technique

for addressing the oracle problem. In our context, metamorphic

testing would transform a Datalog program such that the result of

the new program has a known relationship with the result of the

original program. For example, the new result could be equivalent

to the original result, it could be contained in the original result, or

it could contain the original result.

In fact, the first metamorphic testing technique for Datalog en-

gines was recently implemented in a tool called queryFuzz [34].
However, this technique is limited in the metamorphic transforma-

tions it can perform. In particular, it selects an existing rule in a

given Datalog program and carefully modifies it without consider-

ing the surrounding program. More specifically, its transformations

only consist in adding an atom to a rule, removing an atom from

a rule, or modifying a rule variable. queryFuzz requires that such
changes do not introduce negation and may only be performed

for a specific set of rules (i.e., those at the highest stratum) such

that the resulting program is still valid. In short, transformations in

queryFuzz are limited to ones that can be performed locally without

considering the entire program.

This paper overcomes these limitations by inferring an annotated
precedence graph for a given Datalog program, capturing rich infor-

mation about any dependencies among program relations. Hence,

this graph provides a global view of the program, thereby allowing

for more radical transformations, including adding entirely new

rules, removing existing rules, and handling negation. At the same

time, our approach incorporates all existing queryFuzz transforma-

tions. In other words, we significantly extend the range of possible

transformations, and thus, increase the effectiveness of metamor-

phic testing in finding query bugs in Datalog engines. Moreover,

by defining all our transformations on the annotated precedence

graph, our approach can easily support many Datalog dialects.

https://doi.org/10.1145/3597926.3598052
https://doi.org/10.1145/3597926.3598052

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Muhammad Numair Mansur, Valentin Wüstholz, and Maria Christakis

We implemented this approach in our tool DLSmith, which we

used to test six Datalog engines, each supporting a different dialect.

DLSmith detected 16 previously unknown query bugs in four of

these engines. All bugs were confirmed and eleven were fixed; only

two could have been found by queryFuzz. An engine developer

commented: “The bugs found are hidden deep inside the query plan
generation and optimization pipeline. Due to the complexity of Data-
log rules and data for triggering the error, the bugs are very hard to
find with regular unit testing. Automatic tools are extremely helpful to
identify the issue and improve the robustness of our Datalog engine.”

Contributions. Our paper makes the following contributions:

(1) We present the most comprehensive and effective metamor-

phic testing approach for detecting query bugs in Datalog

engines to date.

(2) We implemented our approach in the publicly available tool

DLSmith1.
(3) We evaluated DLSmith on six Datalog engines supporting

different dialects; our tool detected 16 previously unknown

query bugs in four of these engines and received very posi-

tive feedback from their developers.

Outline. The next section provides necessary background on

Datalog. Sect. 3 gives an overview of our approach, while Sects. 4

and 5 explain the technical details of its key components. In Sect. 6,

we describe the implementation of DLSmith. We present our exper-

imental evaluation in Sect. 7, discuss related work in Sect. 8, and

conclude in Sect. 9.

2 BACKGROUND

In this section, we give an overview of Datalog programs and their

associated precedence graphs.

2.1 Datalog Programs

Rules. A term is either a variable 𝑥,𝑦, 𝑧, . . . or a constant 𝑎, 𝑏, 𝑐,

An atom is an expression of the form 𝑅(®𝑈), where 𝑅 is a relation
symbol of arity𝑚 and ®𝑈 is an𝑚-vector of terms, e.g., 𝑀 (𝑥,𝑦, 𝑎).
A ground atom is an atom without variables, e.g., 𝑀 (𝑎1, . . . , 𝑎𝑚),
where 𝑎𝑖 are constants. A Datalog rule is an expression of the form

𝑅(®𝑈) ← 𝑅1 (®𝑈1), . . . , 𝑅𝑛 (®𝑈𝑛) .

where 𝑅𝑖 (®𝑈𝑖) for 1 ≤ 𝑖 ≤ 𝑛 are atoms. Note that atoms can refer to

the same relation. The expression to the left of← is the head of

the rule, and the expression to the right is the body. Any variable

appearing in ®𝑈 must also appear in some ®𝑈𝑖 . A relation 𝑅 can have

more than one rule, each of which is identified by a unique rule
number 𝑘 , where 𝑘 ranges between 1 and the total number of rules

for the relation.

Programs. Relation symbols are divided in two categories. First,

there are input relations whose contents are given in the form of

facts (ground atoms). These are commonly referred to as extensional
database (EDB) relations. We use 𝐹 to denote the set of facts. Second,

there are intensional database (IDB) relations that are defined by

Datalog rules, and one of them is specified as output. A Datalog

program 𝑃 is a finite set of facts and Datalog rules. 𝑃 is recursive if
a relation symbol appears in both the head and the body of a rule.

1
https://github.com/Rigorous-Software-Engineering/dlsmith

For example, the following is a recursive Datalog program with

three facts and two rules:

// facts (representing edges)

E(1,2). E(2,3). E(3,4).

// rules (computing the transitive closure of E)

C(x,z) :- E(x,z).

C(x,z) :- C(x,y), C(y,z).

The input to the program is E (EDB relation), and the output, C (IDB
relation), represents the transitive closure of the edge relation E.

Stratified Datalog.A stratification of a Datalog program assigns

a non-negative integer, called a stratification number or stratum,

to every IDB relation in the program such that, for every rule, the

following hold:

• For every positive (i.e., not negated) atom 𝑅𝑖 in the rule body,

the stratum of 𝑅𝑖 is greater than or equal to the stratum of

rule head 𝑅.

• For every negative (i.e., negated) atom 𝑅𝑖 in the rule body,

the stratum of 𝑅𝑖 is strictly greater than the stratum of rule

head 𝑅.

Stratification allows providingwell defined semantics for evaluating

Datalog programs [30], and consequently, most Datalog engines

only support stratifiable programs. The evaluation of a program

starts with the highest stratum, for which a fixpoint is computed.

The computed results of any IDB relation in the highest stratum are

then used in the second highest stratum. The process is repeated

until all strata are traversed.

𝑃 is a stratified Datalog program if it does not contain recursion

involving negation. For example, the following program is not

stratifiable because relation P negatively depends on relation L,
which again depends on P:

L(a) :- M(a), P().

P(a) :- R(a), not L(a).

2.2 Precedence Graphs

A Datalog program 𝑃 has an associated directed graph, called prece-
dence graph and denoted by 𝐺𝑃 . 𝐺𝑃 has a node for each relation in

the program and an edge from node 𝑁 to𝑀 whenever a relation 𝑁

is in the body of a certain rule and relation𝑀 is the head of the same

rule. A precedence graph is, therefore, used to capture dependencies

between relations in the program. If a relation appears positively

in the rule body, the corresponding edge is annotated with label +,
otherwise with −. When 𝑃 is non-recursive, its precedence graph is

by definition acyclic. As an example, consider the program in Fig. 1

with its associated precedence graph.

Definition 2.1 (Precedence Graph). Given a Datalog program 𝑃 ,

a precedence graph 𝐺𝑃 = (𝑉 , 𝐸, 𝜃, 𝜆) is a directed, labeled hyper-

graph, where𝑉 is a set of nodes. Each node in𝑉 represents a unique

relation in 𝑃 . Function 𝜃 : 𝑄 → 𝑉 assigns a relation in 𝑄 to a node

in 𝑉 , where 𝑄 is the set of all relations in 𝑃 . 𝐸 ⊆ (𝑉 x𝑉) is a set of
directed edges. Function 𝜆 : 𝐸 → sign, where sign is {+,−}, assigns
labels to edges.

3 OVERVIEW

In this section, we give an overview of our approach (shown in

Fig. 2), which is divided into four phases. On a high level, it uses a

https://github.com/Rigorous-Software-Engineering/dlsmith

Dependency-Aware Metamorphic Testing of Datalog Engines ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

1 // declarations

2 A(X: number , Y:number).
3 B(X:number , Y:number).
4 C(X:number , Y:number , Z:number).
5

6 .output B

7

8 // facts

9 A(1,2).

10 A(2,3).

11 A(3,4).

12

13 //rules

14 B(x,y) :- B(x,y), !A(y,x).

15 B(x,y) :- A(x,y), !C(x,y,y).

(a)

A

B

− +

+
C−B

(b)

Figure 1: A simple Datalog program (a) and its associated

precedence graph (b).

seed program to generate a random annotated precedence graph,

applies metamorphic transformations on this graph, and compares

the results of the programs corresponding to these two graphs.

The first phase takes as input a seed Datalog program 𝑆 and pro-

duces a random precedence graph 𝐺𝑃 . It does so by first extracting

all relation symbols in 𝑆 . For each relation symbol, it generates a

graph node, called a seed node. Next, it randomly generates a num-

ber of new nodes, called generated nodes.𝐺𝑃 is then produced using

these seed and generated nodes. Note, however, that no incoming

edges are added to seed nodes, that is, the corresponding rules

remain unchanged—this allows handling complex seed programs

containing unique language features (e.g., SMT formulas in Formu-

log rules). Since program 𝑆 in Fig. 2 consists of only one relation,

𝐺𝑃 contains one seed node (fib); node a is randomly generated.

The second phase takes 𝑆 and 𝐺𝑃 as input and produces a corre-

sponding program 𝑃 as well as its result 𝑂𝑃 . To achieve this, the

graph annotator first uses 𝐺𝑃 to generate an annotated precedence
graph 𝐺𝑃 , which extends 𝐺𝑃 by decorating its nodes and edges

with properties. 𝑆 and 𝐺𝑃 are then used by the program generator

to produce 𝑃 , which is in turn executed to compute 𝑂𝑃 . Note that

the construction of 𝐺𝑃 by the graph annotator ensures that 𝑃 is

stratifiable and passes all syntactic, semantic, and type checks of

the target Datalog engine.

Under the hood, the program generator starts by creating a new

relation for each node in𝐺𝑃 . Relations created from seed nodes are

called seed relations, and all others are generated relations. Rules for
a seed relation are copied directly from 𝑆 (since the corresponding

seed node in𝐺𝑃 has no incoming edges). Rules for a generated rela-

tion are created based on the incoming edges of the corresponding

node. Edge properties in𝐺𝑃 (number , sign, and vars) are directly re-
flected in program syntax. For example, when considering the edge

from fib to a, its properties denote that atom fib(x,x) (vars) ap-
pears positively (sign) in the first rule (number) for relation a. Node
properties (stratum and ancestry) are semantic; they are computed

using a lightweight static analysis on 𝐺𝑃 .

The third phase takes 𝑆 and 𝐺𝑃 as input and produces a new

program 𝑃tr , which constitutes a metamorphic transformation of

𝑃 , as well as its result 𝑂𝑃tr . In particular, we transform 𝑃 to obtain

𝑃tr such that 𝑂𝑃tr has a known relation with 𝑂𝑃 . Examples of such

relations are equivalent, contracting, and expanding transformations,

i.e., 𝑂𝑃 ≡ 𝑂𝑃EQU , 𝑂𝑃 ⊇ 𝑂𝑃CON , and 𝑂𝑃 ⊆ 𝑂𝑃EXP . This is achieved

with the graph transformer, which applies graph rewrite rules on

𝐺𝑃 to obtain 𝐺𝑃tr , while again ensuring that no incoming edges

are added to seed nodes. Next, the program generator, which is

the same as in the previous phase, converts 𝐺𝑃tr into transformed

program 𝑃tr . In the end, 𝑃tr is executed to compute 𝑂𝑃tr . In Fig. 2,

the graph transformer adds two edges from fib to a to generate a

metamorphically equivalent annotated precedence graph 𝐺𝑃EQU .

The fourth phase compares results 𝑂𝑃 and 𝑂𝑃tr according to

oracle tr . A bug report is generated when the oracle does not hold.

The following two sections explain the key components of our

approach in more detail, namely, the graph annotator and the graph

transformer.

4 GRAPH ANNOTATOR

Recall that, in the second phase of our approach, the graph anno-

tator takes as input a randomly generated precedence graph, 𝐺𝑃 ,

and produces an annotated precedence graph, 𝐺𝑃 , by decorating

the nodes and edges in 𝐺𝑃 with property-value pairs. Such graphs

are also known as property graphs.
Fig. 3 shows an annotated precedence graph for generating the

program of Fig. 1. As in a standard precedence graph, we repre-

sent each relation symbol in the program by a node, called rela-
tional node. Each relational node maintains two properties: stratum
and ancestry. The output relation in the program, which is a rela-

tional node in the graph, is additionally called an output node—the
output node is shown with a double line in the figure. We call

edges between relational nodes relational edges. Each relational

edge maintains three properties: number , sign, and vars. We rep-

resent a ground atom (i.e., fact) by a distinct type of node, called

fact node—fact nodes are shown with dotted lines in the figure. We

associate each fact node with a relational node using a fact edge.
We denote fact values as labels in fact nodes, e.g., label “1,2” for
fact A(1,2). Fact nodes and fact edges are property-less.

Definition 4.1 (Annotated Precedence Graph). Given a Datalog

program 𝑃 , an annotated precedence graph, denoted by 𝐺𝑃 =

(𝑉 ,𝑉𝐹 ,𝑂, 𝐸, 𝐸𝐹 , 𝜃, 𝜃𝐹 , 𝜆, 𝜇), is a directed, attributed hyper-graph. 𝑉

is the set of relational nodes, 𝑉𝐹 the set of fact nodes, and 𝑂 ∈ 𝑉
the output node. 𝐸 ⊆ (𝑉 x𝑉) is the set of relational edges and

𝐸𝐹 ⊆ (𝑉𝐹 x𝑉) the set of fact edges. There is a fact edge from every
node 𝑢 ∈ 𝑉𝐹 to some node 𝑣 ∈ 𝑉 . Function 𝜃 : 𝑄 → 𝑉 assigns

a relation in 𝑄 to a relational node in 𝑉 , where 𝑄 is the set of

all relations in 𝑃 . Similarly, 𝜃𝐹 : 𝐹 → 𝑉𝐹 assigns a fact in 𝐹 to

a fact node in 𝑉𝐹 , where 𝐹 is the set of all facts in 𝑃 . Relational

nodes are assigned properties using function 𝜆 : 𝑉 x𝐾𝑣 → 𝑣𝑎𝑙𝑠𝑣 ,

where 𝐾𝑣 = {stratum, ancestry} is the set of node property keys

and 𝑣𝑎𝑙𝑠𝑣 the set of node property values such that stratum ∈ N
and ancestry ∈ {+,−, ?, none}. For output node 𝑂 , 𝜆 is defined

to assign stratum = 0 and ancestry = +. Relational edges are

assigned properties using function 𝜇 : 𝐸x𝐾𝑒 → 𝑣𝑎𝑙𝑠𝑒 , where

𝐾𝑒 = {number, sign, vars} is the set of edge property keys and 𝑣𝑎𝑙𝑠𝑒
the set of edge property values such that number ∈ N, sign ∈ {+,−},
and vars is a tuple of variables and/or constants.

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Muhammad Numair Mansur, Valentin Wüstholz, and Maria Christakis

Random Graph
Generator

fib(x, a+b):-
 fib(x-1, a),
 fib(x-2, b),
 x > 1.

S

number: 1

sign: +

vars: (x, x)

fib

a stratum: 0

ancestry: +

GP

fib(x, a+b):-
 fib(x-1, a),
 fib(x-2, b),
 x > 1.
a(x, x):- fib(x, x).

output a

P

fib(x,a+b):-
 fib(x-1, a),
 fib(x-2, b),
 x > 1.
a(x, x):- fib(x, x).
a(x, y):- a(x, y),
 fib(y, y).

output a

GP

fib
fib

a

Program
Generator

Graph 
Annotator

Graph
Transformer

Program
Generator

number: 1

sign: +

vars: (x, x)

fib
fib

stratum: 0

ancestry: +

number: 2

sign: +

vars: (y, y)

a
number: 2

sign: +

vars: (x, y)

GPEQU

PEQU

≢
OPEQU

OP

OP

1

2

2 2

2

2

3 3

33

4

Bug
Report

Extract
Relations

1

1

2 3

a

stratum: 0

ancestry: +stratum: 0

ancestry: +

aa

3
4

Figure 2: Overview of our approach.

A

B C

number: 2

sign:

vars: (x, y)

+number: 1

sign:

vars: (y, x)

−

number: 1

sign:

vars: (x, y)

+

stratum: 1

ancestry: −

number: 2

sign:

vars: (x, y, y)

−
stratum: 0

ancestry: +

stratum: 1

ancestry: ?

1,2
2,3

3,4

B

Figure 3: Annotated precedence graph for generating the

program of Fig. 1.

On a high level, extending a standard precedence graph to an

annotated one involves three steps: (1) randomly adding fact nodes

and edges, (2) randomly generating properties for relational edges,

and (3) inferring properties for relational nodes.

Fact nodes and edges. A fact node represents a ground atom

of a relation. A fact edge 𝑒𝑓 from a fact node 𝐹 to a relational node

𝑁 denotes that 𝐹 represents a ground atom of relation 𝑁 . In Fig. 3,

we have three fact nodes connected to relational node 𝐴; these

represent the three facts in the program of Fig. 1.

Relational-edge properties. As in standard precedence graphs,

there is a relational edge 𝑒 from a relational node 𝑁 to a relational

node𝑀 if 𝑁 appears in the body of a rule 𝑟 and𝑀 is the head of the

same rule. Property number for 𝑒 is 𝑘 , where 𝑘 is the rule number

for 𝑟 . sign is + if 𝑁 appears positively in 𝑟 , otherwise it is −. 𝑣𝑎𝑟𝑠 is
®𝑈𝑖 if𝑁 is the 𝑖th atom in the body of 𝑟 . Note that these properties are

syntactic; they are later used by the program generator to produce

a valid Datalog program.

In Fig. 3, we have an edge from 𝐵 to 𝐵 with property values

number = 1, sign = +, and vars = (𝑥,𝑦). In the program of Fig. 1,

we therefore have a recursive relation 𝐵, where 𝐵 appears positively

in the first rule with variables (𝑥,𝑦). In Fig. 3, we also have an edge

from 𝐶 to 𝐵 with property values number = 2, sign = −, and
vars = (𝑥,𝑦,𝑦). As a result, in Fig. 1, relation 𝐶 appears negatively

in the second rule for 𝐵 with variables (𝑥,𝑦,𝑦).
We call an edge 𝑒 positive if property sign = +, otherwise we

call it negative. We call a path between two relational nodes in𝐺

a dataflow path (denoted by 𝜋). 𝜋 from 𝑁 to 𝑀 is positive if the
number of negative edges in 𝜋 is even, otherwise 𝜋 is negative. It is
important to note that data flows monotonically along any dataflow

path between 𝑁 and𝑀 . In the case of a positive path, an increase

or decrease in data in 𝑁 increases or decreases (although not neces-

sarily strictly) the data in𝑀 , respectively. In the case of a negative

path, an increase or decrease in data in 𝑁 decreases or increases

(although not necessarily strictly) the data in𝑀 , respectively.

Relational-node properties. Property ancestry for a node 𝑁 is

+ if all (possibly infinite) dataflow paths from 𝑁 to output node 𝑂

are positive; ancestry for 𝑁 is − if all (possibly infinite) paths from

𝑁 to𝑂 are negative; ancestry is ? if there is at least one positive and

one negative path from 𝑁 to 𝑂 ; and 𝑎𝑛𝑐𝑒𝑠𝑡𝑟𝑦 is none if there is no

dataflow path from 𝑁 to𝑂 . We say that a node is in positive ancestry
of𝑂 if ancestry is + for that node, the node is in negative ancestry if

ancestry is −, the node is in unknown ancestry if ancestry is ?, and

the node is not in the ancestry if ancestry is none. We compute the

value of ancestry for a node𝑁 by performing a backward depth-first

traversal of 𝐺 from 𝑂 to 𝑁 .

Property stratum for 𝑁 is the stratification number of 𝑁 . Essen-

tially, it is the largest number of negative edges along any path from

𝑁 to𝑂 in𝐺 . Note that, in a stratified Datalog program, all relations

have a finite stratum, that is, the precedence graph of a stratified

Dependency-Aware Metamorphic Testing of Datalog Engines ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

program has no cycle that contains a negative edge. For example, in

Fig. 3, 𝐶 has stratum = 1 and ancestry = − since there is a negative

path from 𝐶 to 𝐵 with one negative edge. 𝐴 has ancestry = ? since

there is at least one positive and one negative path from 𝐴 to 𝐵.

Relational-node properties are semantic; they are computed by

the graph annotator with a lightweight static analysis of 𝐺 and are

later used by the graph transformer to apply valid metamorphic

transformations.

5 GRAPH TRANSFORMER

In this section, we define several primitive rewrite rules for anno-

tated precedence graphs, introduce a methodology for specifying

metamorphic transformations using these rules, and provide con-

crete example transformations.

5.1 Graph Rewrite Rules

Graph rewriting transforms a host graph, in our context the anno-

tated precedence graph 𝐺 = (𝑉 ,𝑉𝐹 ,𝑂, 𝐸, 𝐸𝐹 , 𝜃, 𝜃𝐹 , 𝜆, 𝜇), by adding,

removing, or altering the properties of graph elements (nodes

or edges) using declaratively defined rules. A graph rewrite rule
R(∗∗𝑔, ∗∗atr) is a variadic function, i.e., a function of indefinite

arity, that takes as input a number of host graph elements (rep-

resented as ∗∗𝑔) and rewrite attributes (represented as ∗∗atr); it
returns a result graph 𝐺tr .

Add rewrite rules. Add rewrite rules transform 𝐺 by adding a rela-

tional node, a fact node, or a relational edge between two existing

relational nodes.

AddRelNode. Given a graph 𝐺 = (𝑉 ,𝑉𝐹 ,𝑂, 𝐸, 𝐸𝐹 , 𝜃, 𝜃𝐹 , 𝜆, 𝜇),
this rule adds a relational node𝑛with property values nvals to𝐺 ; we
denote it as RAddRelNode (∗∗𝑔, ∗∗atr), where ∗∗𝑔 = {𝑛} and ∗∗atr =
{nvals}. The result graph is 𝐺tr = (𝑉 ′,𝑉𝐹 ,𝑂, 𝐸, 𝐸𝐹 , 𝜃 ′, 𝜃𝐹 , 𝜆′, 𝜇),
where 𝑉 ′ = 𝑉 ∪ {𝑛} and 𝜃 ′, 𝜆′ only differ from 𝜃, 𝜆 by including 𝑛.

AddFact. Given a graph 𝐺 = (𝑉 ,𝑉𝐹 ,𝑂, 𝐸, 𝐸𝐹 , 𝜃, 𝜃𝐹 , 𝜆, 𝜇), this
rule adds a fact node 𝑓 and a fact edge 𝑒𝑓 from 𝑓 to relational node

𝑣 ∈ 𝑉 ; we denote it as RAddFact (∗∗𝑔, ∗∗atr), where ∗∗𝑔 = {𝑓 , 𝑣}
and ∗∗atr = ∅. The result graph is𝐺tr = (𝑉 ,𝑉 ′𝐹 ,𝑂, 𝐸, 𝐸

′
𝐹
, 𝜃, 𝜃 ′

𝐹
, 𝜆, 𝜇),

where 𝑉 ′
𝐹
= 𝑉𝐹 ∪ 𝑓 , 𝐸′𝐹 = 𝐸𝐹 ∪ 𝑒𝑓 , and 𝜃 ′𝐹 only differs from 𝜃𝐹 by

including 𝑓 .

AddRelEdge. Given a graph 𝐺 = (𝑉 ,𝑉𝐹 ,𝑂, 𝐸, 𝐸𝐹 , 𝜃, 𝜃𝐹 , 𝜆, 𝜇),
this rule adds a relational edge 𝑒𝑟 with property value evals from
𝑢 to 𝑣 , where 𝑢, 𝑣 ∈ 𝑉 ; we denote it as RAddRelEdge (∗∗𝑔, ∗∗atr),
where ∗∗𝑔 = {𝑢, 𝑣} and ∗∗atr = {evals}. The result graph is 𝐺tr =

(𝑉 ,𝑉𝐹 ,𝑂, 𝐸′, 𝐸𝐹 , 𝜃, 𝜃𝐹 , 𝜆, 𝜇′), where 𝐸′ = 𝐸 ∪ 𝑒𝑟 and 𝜇′ only differs

from 𝜇 by including 𝑒𝑟 .

Del rewrite rules. Del rewrite rules transform𝐺 by deleting a rela-

tional node, a fact node, or a relational edge between two existing

relational nodes.

DelRelNode. Given a graph 𝐺 = (𝑉 ,𝑉𝐹 ,𝑂, 𝐸, 𝐸𝐹 , 𝜃, 𝜃𝐹 , 𝜆, 𝜇),
this rule deletes a node 𝑣 ∈ 𝑉 along with its edges; we denote

it as RDelRelNode (∗∗𝑔, ∗∗atr), where ∗∗𝑔 = {𝑣} and ∗∗atr = ∅.
The result graph is 𝐺tr = (𝑉 ′,𝑉𝐹 ,𝑂, 𝐸′, 𝐸𝐹 , 𝜃 ′, 𝜃𝐹 , 𝜆′, 𝜇′), where
𝑉 ′ = 𝑉 \ 𝑣 , 𝐸′ = 𝐸 \ 𝐸𝑣 if 𝐸𝑣 is the set of incoming and outgoing

edges of 𝑣 , and 𝜃 ′, 𝜆′ only differ from 𝜃, 𝜆 by excluding 𝑣 .

DelFact. Given a graph 𝐺 = (𝑉 ,𝑉𝐹 ,𝑂, 𝐸, 𝐸𝐹 , 𝜃, 𝜃𝐹 , 𝜆, 𝜇), this
rule deletes a fact node 𝑓 associated with relational node 𝑣 ∈ 𝑉 and

the fact edge 𝑒𝑓 from 𝑓 to 𝑣 ; we denote it as RDelFact (∗∗𝑔, ∗∗atr),
where ∗∗𝑔 = {𝑓 , 𝑣} and ∗∗atr = ∅. The result graph is 𝐺tr =

(𝑉 ,𝑉 ′
𝐹
,𝑂, 𝐸, 𝐸′

𝐹
, 𝜃, 𝜃 ′

𝐹
, 𝜆, 𝜇), where 𝑉 ′

𝐹
= 𝑉𝐹 \ 𝑓 , 𝐸′𝐹 = 𝐸𝐹 \ 𝑒𝑓 , and

𝜃 ′
𝐹
only differs from 𝜃𝐹 by excluding 𝑓 .

DelRelEdge. Given a graph 𝐺 = (𝑉 ,𝑉𝐹 ,𝑂, 𝐸, 𝐸𝐹 , 𝜃, 𝜃𝐹 , 𝜆, 𝜇),
this rule deletes a relational edge 𝑒 ∈ 𝐸; we denote the rule as

RDelRelEdge (∗∗𝑔, ∗∗atr), where ∗∗𝑔 = {𝑒} and ∗∗atr = ∅. The result
graph is 𝐺tr = (𝑉 ,𝑉𝐹 ,𝑂, 𝐸′, 𝐸𝐹 , 𝜃, 𝜃𝐹 , 𝜆, 𝜇′), where 𝐸′ = 𝐸 \ 𝑒 and
𝜇′ only differs from 𝜇 by excluding 𝑒 .

Mod rewrite rules. Mod rewrite rules transform 𝐺 by modifying

property values of an existing relational node or edge.

ModRelNode. Given a graph 𝐺 = (𝑉 ,𝑉𝐹 ,𝑂, 𝐸, 𝐸𝐹 , 𝜃, 𝜃𝐹 , 𝜆, 𝜇),
this rule modifies the property values of a node 𝑣 ∈ 𝑉 ; we denote it
as RModRelNode (∗∗𝑔, ∗∗atr), where ∗∗𝑔 = {𝑣} and ∗∗atr = {nvals}.
The result graph is𝐺tr = (𝑉 ,𝑉𝐹 ,𝑂, 𝐸, 𝐸𝐹 , 𝜃, 𝜃𝐹 , 𝜆′, 𝜇), where 𝜆′ only
differs from 𝜆 by assigning property values nvals to 𝑣 .

ModRelEdge. Given a graph 𝐺 = (𝑉 ,𝑉𝐹 ,𝑂, 𝐸, 𝐸𝐹 , 𝜃, 𝜃𝐹 , 𝜆, 𝜇),
this rule modifies the property values of an edge 𝑒 ∈ 𝐸; we denote it
as RModRelEdge (∗∗𝑔, ∗∗atr), where ∗∗𝑔 = {𝑒} and ∗∗atr = {evals}.
The result graph is𝐺tr = (𝑉 ,𝑉𝐹 ,𝑂, 𝐸, 𝐸𝐹 , 𝜃, 𝜃𝐹 , 𝜆, 𝜇′), where 𝜇′ only
differs from 𝜇 by assigning property values evals to 𝑒 .

5.2 Specifying Metamorphic Transformations

Recall that the graph transformer (see Fig. 2) applies graph rewrite

rules on the annotated precedence graph𝐺𝑃 of program 𝑃 to obtain

𝐺𝑃tr , which will then be converted into transformed program 𝑃tr .

Here, tr is the metamorphic relation that holds between the output

of 𝑃 (𝑂𝑃) and that of 𝑃tr (𝑂𝑃tr). Specifically, we have

• 𝑂𝑃 ≡ 𝑂𝑃EQU for equivalent transformations,

• 𝑂𝑃 ⊇ 𝑂𝑃CON for contracting transformations, and

• 𝑂𝑃 ⊆ 𝑂𝑃EXP for expanding transformations.

We enforce relation tr by applying a graph rewrite rule R on a

set of graph elements that satisfy a precondition 𝜙 . In general, we

define a metamorphic transformation as a triple

assume(𝜙 (∗∗𝑔))

∗∗atr = 𝐺𝑃 .generate_attributes(∗∗arg)
𝐺𝑃tr = 𝐺𝑃 .R(∗∗𝑔, ∗∗atr)

assert(out(𝐺𝑃) ≈tr out(𝐺𝑃tr))

stating that if precondition 𝜙 holds for graph elements ∗∗𝑔, then
applying rewrite rule R on ∗∗𝑔 establishes a relation tr between the

output of 𝑃 (out(𝐺𝑃)) and that of 𝑃tr (out(𝐺𝑃tr)). In this context,

designing a metamorphic transformation essentially consists in

defining precondition 𝜙 , one or more rewrite rules, and an attribute

generation scheme implemented inmethod generate_attributes.
As an example, consider rewrite rule RAddRelEdge (𝑢, 𝑣, evals),

which adds an edge 𝑒 from relational node 𝑢 to relational node 𝑣 . In

the transformed program 𝑃tr , this means that a new atom is added

in a rule for 𝑅, where 𝑅 = 𝜃−1 (𝑣) is the relation corresponding to

𝑣 . When 𝑢 ∈ 𝑉 , where 𝑉 is the set of all relational nodes in 𝐺𝑃 ,

and 𝑣 ∈ 𝑉none, where 𝑉none is the set of all nodes that are not in

the ancestry of the output node 𝑂 , we have an equivalent (EQU)

transformation. This is because there is no dataflow path from 𝑣 to

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Muhammad Numair Mansur, Valentin Wüstholz, and Maria Christakis

a

number: 1

sign:

vars: (x)

+

P

a(x)
b(x) :- a(x)

PEQU

a(x)
c(x)
b(x) :- a(x)

a

number: 1

sign:

vars: (x)

+

stratum: 0

ancestry: +

stratum: 0

ancestry: +

stratum: 0

ancestry: +

stratum: 0

ancestry: +

stratum: 0

ancestry: none

bb bb

c

GP GPEQU

Figure 4: An example EQU-AddRelNode transformation.

𝑂 , and thus, when adding 𝑒 from𝑢 to 𝑣 , there is still no data flowing

to 𝑂 through 𝑒 . We represent this transformation as follows.

assume(𝑢 ∈ 𝐺𝑃 .get_all_nodes()
∧

𝑣 ∈ 𝐺𝑃 .get_nodes_with_ancestry(none))

evals = 𝐺𝑃 .generate_attributes(𝑢, 𝑣)

𝐺𝑃EQU = 𝐺𝑃 .RAddRelEdge (𝑢, 𝑣, evals)

assert(out(𝐺𝑃) ≡ out(𝐺𝑃EQU))

Method get_all_nodes retrieves all nodes in the annotated prece-

dence graph, whereasmethod get_nodes_with_ancestry retrieves
all nodes with a particular ancestry, in this case none. Method

generate_attributes returns values for properties number , sign,
and vars of new edge 𝑒 .

5.3 Example Metamorphic Transformations

We now present a sample of the transformations implemented in

DLSmith—these are the transformations that detected query bugs in

the Datalog engines we tested. For the remaining transformations

in DLSmith, see Tab. 1.
EQU-AddRelNode.This is an equivalent transformation adding

a new relational node (see Fig. 4 for an example).

assume(true)

nvals = {stratum : 0, ancestry : none}
𝐺𝑃EQU = 𝐺𝑃 .RAddRelNode (𝑛, nvals)

assert(out(𝐺𝑃) ≡ out(𝐺𝑃EQU))

Here, {stratum : 0, ancestry : none} is the implementation of

generate_attributes. Recall that property stratum of a node is

the largest number of negative edges along any path from the

node to the output in the annotated precedence graph. Here, since

ancestry is none, there is no path from the new node to the output,

and thus, stratum must be 0.

number: 2

sign:

vars: (x)

+

number: 2

sign:

vars: (x)

−

GP GPEQU

P PEQU

a(x)
c(x)
b(x) :- a(x)
b(x) :- c(x), !c(x)

a(x)
c(x)
b(x) :- a(x)

a

number: 1

sign:

vars: (x)

+

stratum: 0

ancestry: +

stratum: 0

ancestry: +

stratum: 0

ancestry: none

bb

a

number: 1

sign:

vars: (x)

+

bb

stratum: 0

ancestry: +

stratum: 0

ancestry: +

stratum: 1

ancestry: ?

c
c

Figure 5: An example EQU-AddRelEdges transformation.

EQU-AddRelEdges. This is an equivalent transformation

adding a positive and a negative relational edge between two ex-

isting nodes (see Fig. 5 for an example). In particular, it adds two

edges 𝑒 and 𝑒′ from relational node 𝑢 to relational node 𝑣 in 𝐺𝑃 ,

where sign = + for 𝑒 and sign = − for 𝑒′. Node 𝑣 may be any rela-

tional node in𝐺𝑃 , but to ensure that the resulting program 𝑃EQU is

stratifiable, node 𝑢 may not be a descendant of 𝑣 .

assume(𝑣 ∈ 𝐺𝑃 .get_all_nodes()
∧

𝑢 ∈ 𝐺𝑃 .get_all_nodes() \𝐺𝑃 .get_descendants(𝑣))

𝑘 = 𝐺𝑃 .get_max_rule_number(𝑣) + 1
args = 𝐺𝑃 .generate_vars(𝑣, 𝑘)
evals = {number : 𝑘, sign : +, vars : args}
evals′ = {number : 𝑘, sign : −, vars : args}
𝑠 = 𝐺𝑃 .get_stratum(𝑣) + 1
𝑎 = if 𝐺𝑃 .get_ancestry(𝑣) == none then none else ?

nvals = {stratum : 𝑠, ancestry : 𝑎}
𝐺𝑃EQU = 𝐺𝑃 .RAddRelEdge (𝑢, 𝑣, evals)
𝐺𝑃EQU = 𝐺𝑃EQU .RAddRelEdge (𝑢, 𝑣, evals′)
𝐺𝑃EQU = 𝐺𝑃EQU .RModRelNode (𝑢, nvals)

assert(out(𝐺𝑃) ≡ out(𝐺𝑃EQU))

Note that adding two such edges to any node makes the corre-

sponding rule compute an empty result. Therefore, for the transfor-

mation to be equivalent, we apply it on a new rule of an existing

relation 𝑅, where 𝑅 = 𝜃−1 (𝑣). Method get_max_rule_number re-

trieves the total number of existing rules for 𝑅, and thus, 𝑘 must be

get_max_rule_number(𝑣) + 1. Method generate_vars generates

random variables, which however satisfy the type constraints of

𝑅. Finally, we update the properties of node 𝑢 to reflect the added

edges—stratum is incremented by 1 due to the negative edge, and

if there is a path from 𝑣 to the output, then ancestry becomes ? due

to the edges having different sign values.

EQU-AddSelfEdge. This transformation adds a positive self

edge 𝑒 to an existing relational node 𝑣 , that is, the edge connects 𝑣

Dependency-Aware Metamorphic Testing of Datalog Engines ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Table 1: Remaining metamorphic transformations implemented in DLSmith (grouped by oracles EQU, CON, and EXP).

Transformation Description

EQU-AddFact Adds a fact node to a relational node that is not in the ancestry of the output

EQU-DelFact Deletes a fact node from a relational node that is not in the ancestry of the output

EQU-DelRelNode Deletes a relational node that is not in the ancestry of the output

EQU-DelRelEdge Deletes an incoming relational edge from a node that is not in the ancestry of the output

CON-AddFact Adds a fact node to a relational node that is in negative ancestry of the output

CON-DelFact Deletes a fact node from a relational node that is in positive ancestry of the output

CON-DelRelEdges Deletes all incoming relational edges from a node that is in positive ancestry of the output

EXP-AddFact Adds a fact node to a relational node that is in positive ancestry of the output

EXP-DelFact Deletes a fact node from a relational node that is in negative ancestry of the output

EXP-DelRelEdge Deletes an incoming relational edge from a node that is in positive ancestry of the output

a

number: 1

sign:

vars: (x)

+

P

a(x)
b(x) :- a(x)

PEQU

a(x)
b(x) :- a(x)
b(x) :- b(x)

a

number: 1

sign:

vars: (x)

+

stratum: 0

ancestry: +

stratum: 0

ancestry: +

stratum: 0

ancestry: +

stratum: 0

ancestry: +bb

GP GPEQU

bb number: 2

sign:

vars: (x)

+

Figure 6: An example EQU-AddSelfEdge transformation.

to itself (see Fig. 6 for an example). Similarly to EQU-AddRelEdges,

for the transformation to be equivalent, we apply it on a new rule

of an existing relation.

assume(𝑣 ∈ 𝐺𝑃 .get_all_nodes())

𝑘 = 𝐺𝑃 .get_max_rule_number(𝑣) + 1
args = 𝐺𝑃 .generate_vars(𝑣, 𝑘)
evals = {number : 𝑘, sign : +, vars : args}
𝐺𝑃EQU = 𝐺𝑃 .RAddRelEdge (𝑣, 𝑣, evals)

assert(out(𝐺𝑃) ≡ out(𝐺𝑃EQU))

EQU-FactInline. This transformation removes all incoming

edges to a relational node 𝑣 . Removing these edges effectively re-

moves all rules for relation 𝑅 = 𝜃−1 (𝑣). For the output of 𝑃EQU to

remain equivalent to the output of 𝑃 , the removed rules are replaced

with the corresponding facts that these rules would compute—we

retrieve these facts by executing the rules for 𝑅. In particular, the

transformation creates a fact node for each retrieved fact and asso-

ciates it with 𝑣 using the AddFact rewrite rule.

PCON

GP

P

a(x)
c(x)
b(x) :- a(x)

a

number: 1

sign:

vars: (x)

+

stratum: 0

ancestry: +

stratum: 0

ancestry: +

stratum: 0

ancestry: none

bb

GPCON

number: 1

sign:

vars: (x)

+

a(x)
c(x)
b(x) :- a(x), c(x)

a

number: 1

sign:

vars: (x)

+

bb

stratum: 0

ancestry: +

stratum: 0

ancestry: +stratum: 0

ancestry: +

c
c

Figure 7: An example CON-AddRelEdge transformation.

assume(𝑣 ∈ 𝐺𝑃 .get_all_nodes())

𝐸 = 𝐺𝑃 .get_incoming_edges(𝑣)

𝐺𝑃EQU = 𝐺𝑃

foreach 𝑒 ∈ 𝐸 : 𝐺𝑃EQU = 𝐺𝑃EQU .RDelRelEdge (𝑒)
𝐹 = 𝐺𝑃 .get_facts(𝑣)

foreach 𝑓 ∈ 𝐹 : 𝐺𝑃EQU = 𝐺𝑃EQU .RAddFact (𝑓 , 𝑣)
𝐺𝑃EQU = 𝐺𝑃EQU .annotate()

assert(out(𝐺𝑃) ≡ out(𝐺𝑃EQU))

At the end of this radical transformation, we re-annotate the result-

ing graph since all ancestors of 𝑣 might now have different stratum
and ancestry values.

CON-AddRelEdge. This is a contracting transformation that

adds a positive relational edge 𝑒 from 𝑢 to 𝑣 , where 𝑣 is in positive

ancestry of output node 𝑂 and 𝑢 either has the same stratification

number as 𝑣 or is not an ancestor of 𝑣 at all (see Fig. 7 for an

example). This is to ensure that 𝑒 does not introduce a cycle with

negation between 𝑢 and 𝑣 , thus rendering the transformed program

unstratifiable. Adding an incoming edge to 𝑣 corresponds to adding

an atom in any rule for relation 𝑅 = 𝜃−1 (𝑣), which contracts the

result of 𝑅—adding an atom is essentially a conjunction in Datalog.

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Muhammad Numair Mansur, Valentin Wüstholz, and Maria Christakis

Since data flows monotonically from 𝑅 to the output relation, this

transformation will also contract the result of the program.

assume(𝑣 ∈ 𝐺𝑃 .get_nodes_with_ancestry(+)
∧

𝑢 ∈ 𝐺𝑃 .get_nodes_with_stratum(𝑣)
⋃

(𝐺𝑃 .get_all_nodes() \ 𝐺𝑃 .get_ancestors(𝑣)))

𝑘 = generate_number(1,𝐺𝑃 .get_max_rule_number(𝑣))

args = 𝐺𝑃 .generate_vars(𝑣, 𝑘)
evals = {number : 𝑘, sign : +, vars : args}
𝑠 = 𝐺𝑃 .get_stratum(𝑣)

𝑎 = 𝐺𝑃 .get_ancestry(𝑢)
nvals = {stratum : 𝑠, ancestry : 𝑎}
𝐺𝑃CON = 𝐺𝑃 .RAddRelEdge (𝑢, 𝑣, evals)
𝐺𝑃CON = 𝐺𝑃CON .RModRelNode (𝑢, nvals)

assert(out(𝐺𝑃) ⊇ out(𝐺𝑃CON))

EXP-AddRelEdge. This is an expanding transformation that

adds a positive relational edge 𝑒 from 𝑢 to 𝑣 (see Fig. 8 for an exam-

ple). Similar to the previous transformation, 𝑣 is in positive ancestry

of output node𝑂 , and𝑢 either has the same stratification number as

𝑣 or is not an ancestor of 𝑣 at all. Contrary to the previous transfor-

mation, adding 𝑒 creates a new rule for relation 𝑅 = 𝜃−1 (𝑣), which
expands the result of 𝑅—adding a rule is essentially a disjunction

in Datalog. Consequently, the program result is also expanded.

assume(𝑣 ∈ 𝐺𝑃 .get_nodes_with_ancestry(+)
∧

𝑢 ∈ 𝐺𝑃 .get_nodes_with_stratum(𝑣)
⋃

(𝐺𝑃 .get_all_nodes() \ 𝐺𝑃 .get_ancestors(𝑣)))

𝑘 = 𝐺𝑃 .get_max_rule_number(𝑣) + 1
args = 𝐺𝑃 .generate_vars(𝑣, 𝑘)
evals = {number : 𝑘, sign : +, vars : args}
𝑠 = 𝐺𝑃 .get_stratum(𝑣)

𝑎 = 𝐺𝑃 .get_ancestry(𝑢)
nvals = {stratum : 𝑠, ancestry : 𝑎}
𝐺𝑃EXP = 𝐺𝑃 .RAddRelEdge (𝑢, 𝑣, evals)
𝐺𝑃EXP = 𝐺𝑃EXP .RModRelNode (𝑢, nvals)

assert(out(𝐺𝑃) ⊆ out(𝐺𝑃EXT))

6 IMPLEMENTATION

We implemented DLSmith in a total of 6,300 lines of Python code.

It currently supports six Datalog dialects, namely, Ascent [45],

DDlog [44], Flix [33], Formulog [4], Scallop [23], and Soufflé [24].

In the rest of this section, we discuss how to implement new meta-

morphic transformations as well as the existing queryFuzz trans-
formations [34] in DLSmith.

Implementing new transformations. The transformations

described in the previous section require (on average) 40 lines of

Python code to implement. Implementing a transformation for an al-

ready supported Datalog engine involves the following steps: (1) ex-

pressing a precondition, (2) retrieving the graph elements satisfying

the precondition, (3) generating attributes for the graph rewrite

GP

a

number: 1

sign:

vars: (x)

+

stratum: 0

ancestry: +

stratum: 0

ancestry: +

stratum: 0

ancestry: none

bb

c

GPEXP

number: 2

sign:

vars: (x)

+
a

number: 1

sign:

vars: (x)

+

bb

stratum: 0

ancestry: +

stratum: 0

ancestry: +stratum: 0

ancestry: +

c

PEXPP

a(x)
c(x)
b(x) :- a(x)

a(x)
c(x)
b(x) :- a(x)
b(x) :- c(x)

Figure 8: An example EXP-AddRelEdge transformation.

rules(s), (4) calling the graph rewrite rule(s), and (5) expressing a

postcondition. Implementing a transformation for a new engine

additionally requires extracting relations from seed programs and

generating programs from annotated precedence graphs.

Implementing queryFuzz transformations. queryFuzz im-

plements metamorphic transformations based on formal properties

of conjunctive queries, namely, query containment and equivalence.

As described earlier however, these transformations are limited

since the approach does not have a global view of the program

being transformed. On the other hand, DLSmith subsumes query-
Fuzz—not only can all queryFuzz transformations be expressed

using the specifications in Sect. 5, but its transformations can now

also be applied in any stratum of the Datalog program. In partic-

ular, this is how queryFuzz transformations can be expressed in

DLSmith:

• Add transformations add an atom 𝑅(𝑣1, . . . , 𝑣𝑛) to a rule of

relation 𝑄 . These can be expressed in DLSmith by adding

a relational edge 𝑒 from a relational node 𝑢 to a relational

node 𝑣 , where 𝑢 = 𝜃 (𝑅) and 𝑣 = 𝜃 (𝑄), using rewrite rule

RAddRelEdge.
• Mod transformations modify a rule of relation 𝑄 by re-

naming a variable appearing in its atoms. These can be

expressed in DLSmith by modifying property vars of the
incoming edges to a node 𝑣 , where 𝑣 = 𝜃 (𝑅), using rewrite
rule RModRelEdge.

• Rem transformations remove an atom 𝑅(𝑣1, . . . , 𝑣𝑛) from a

rule of relation 𝑄 . These can be expressed in DLSmith by

removing a relational edge 𝑒 from a relational node 𝑢 to

a relational node 𝑣 , where 𝑢 = 𝜃 (𝑅) and 𝑣 = 𝜃 (𝑄), using
rewrite rule RDelRelEdge.
• Neg transformations replace an atom 𝑅(𝑣1, . . . , 𝑣𝑛) in a rule

of relation 𝑄 with the negated atom of a new relation, say

neg. For instance, the following rule
p(X, Y) :- a(X, Y), b(Y, Z), c(Z).

is transformed into

neg(Z) :- a(X, Y), b(Y, Z), not c(Z).

p(X, Y) :- a(X, Y), b(Y, Z), not neg(Z).

Dependency-Aware Metamorphic Testing of Datalog Engines ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Relation neg is defined to have the same body as the rule for

𝑄 but with a negated 𝑅, thereby introducing double negation.

These transformations are always equivalent and may be

expressed in DLSmith by generating a new relational node

for neg, adding edges for the atoms of neg, and adjusting the
edges for the atoms of 𝑄 .

7 EXPERIMENTAL EVALUATION

In this section, we address the following research questions:

RQ1: How effective is DLSmith in detecting previously un-

known query bugs in diverse Datalog engines?

RQ2: What are characteristics of the detected bugs?

RQ3: How effective is DLSmith in terms of code coverage?

RQ4: How efficient is DLSmith?

7.1 Setup

We tested six mature Datalog engines, namely, Ascent, DDlog, Flix,

Formulog, Scallop, and Soufflé. All engines are publicly available

on GitHub. We completed the implementation of the first version

of DLSmith in January 2022 and started our testing campaign with

Soufflé. Until September 2022, we added support for the remaining

five engines as well as for more transformations. On average, we

spent about 1.5 months testing each engine.

As seeds, we used semantically valid test cases from the engine

repositories. We employed 24 seeds for Ascent, 246 for DDlog, 169

for Formulog, 39 for Scallop, and 240 for Soufflé. Note that we

did not use any seeds for Flix—Flix is a comprehensive functional

programming language, and DLSmith does not currently support

parsing Flix programs. Unless stated otherwise, for each seed pro-

gram, DLSmith generates 500 transformed programs. To obtain

each transformed program, DLSmith applies a random number of

transformations, between 1 and 100.

We performed all experiments on a 32-core Intel ® Xeon ® E5-

2667 v2 CPU @ 3.30GHz machine with 256GB of memory, running

Debian GNU/Linux 10 (buster).

7.2 Results

We now discuss our findings for each research question.

RQ1: Query bugs in diverse engines. We tested six active Datalog

implementations, each supporting a different dialect. We give a

brief overview of these engines next.

Ascent can integrate with arbitrary application logic written

in the Rust programming language. In particular, it allows

Datalog rules to call into Rust code and vice versa.

DDlog is used for incremental computation. Specifically, devel-

opers declaratively specify a desired input-output mapping,

and DDlog uses it to synthesize an efficient incremental

implementation.

Flix is a functional, imperative, and logic programming lan-

guage, which looks like Scala and provides support for alge-

braic data types, pattern matching, higher order functions,

etc. In Flix, Datalog programs are first class values, and Dat-

alog constraints have more expressive power.

Formulog is a domain-specific dialect with support for con-

structing and reasoning about SMT formulas.

Table 2: Query bugs detected by DLSmith.

Bug Datalog Metamorphic Bug

ID Engine Transformation Status

1 Soufflé EQU-AddRelEdges Fixed

2 Soufflé EQU-AddRelEdges Fixed

3 Soufflé EQU-AddRelEdges Fixed

4 Soufflé AddEq Fixed

5 Soufflé AddEq Fixed

6 Soufflé EQU-AddRelEdges Confirmed

7 Formulog EQU-AddSelfEdge Fixed

8 Ascent AddEq Fixed

9 Scallop CON-AddRelEdge Fixed

10 Scallop CON-AddRelEdge Fixed

11 Scallop EXP-AddRelEdge Fixed

12 Scallop CON-AddRelEdge Fixed

13 Scallop EQU-AddRelEdges Confirmed

14 Soufflé EQU-AddRelEdges Confirmed

15 Soufflé EQU-FactInline Confirmed

16 Soufflé EQU-AddRelNode, Confirmed

EQU-AddRelEdges

Scallop is a Datalog-based neuro-symbolic programming lan-

guage, supporting discrete, probabilistic, and differential

reasoning modes. Rules may be integrated with machine-

learning models, facts may have associated probabilities,

results may be computed with a success probability, etc.

Soufflé is a fast and scalable dialect, whose syntaxwas inspired

by bddbddb [53] and 𝜇𝑍 in Z3 [21]. Its primary goal is speed,

thereby tailoring program execution to multi-core servers

with large memory.

Tab. 2 shows the list of unique and previously unknown query

bugs detected byDLSmith. The first column of the table provides an

identifier for each bug and links to the (anonymized) bug report on

GitHub. The second column shows the engine where the bug was

found, the third the metamorphic transformation that was applied,

and the last column the status of the bug. In total,DLSmith detected

16 query bugs in four engines, all of which are confirmed by the

developers and eleven are fixed.

Note that AddEq (bugs 4, 5, 8) is a queryFuzz transformation

implemented in DLSmith. Out of all detected bugs, only bugs 4 and

8 could have been detected by queryFuzz. Bug 5 is detected with

a queryFuzz transformation, which however is not applied at the

highest stratum—this is only possible in DLSmith. Also note that

our tool applies sequences of transformations, and bug 16 required

a sequence of two transformations to be detected.

RQ2: Characteristics of detected bugs. To better understand the

characteristics of the detected bugs, we now discuss them in detail.

Soufflé. Bugs 1, 2, 5, and 15 were found in the implementation

of the eqrel (equivalence relation) data structure. According to the
developers, they recently applied performance-related changes to

this code, which is perhaps when these bugs were introduced. Bug

3 was due to the incorrect implementation of utility function range
in the presence of unsigned bounds. Bug 4 was caused by a mistake

in the implementation of subsumption for the btree_delete data

https://github.com/souffle-lang/souffle/issues/2163
https://github.com/souffle-lang/souffle/issues/2176
https://github.com/souffle-lang/souffle/issues/2182
https://github.com/souffle-lang/souffle/issues/2189
https://github.com/souffle-lang/souffle/issues/2190
https://github.com/souffle-lang/souffle/issues/2168
https://github.com/HarvardPL/formulog/issues/12
https://github.com/s-arash/ascent/issues/3
https://github.com/scallop-lang/scallop-lang.github.io/issues/3
https://github.com/scallop-lang/scallop-lang.github.io/issues/6
https://github.com/scallop-lang/scallop-lang.github.io/issues/7
https://github.com/scallop-lang/scallop-lang.github.io/issues/18
https://github.com/scallop-lang/scallop-lang.github.io/issues/19
https://github.com/souffle-lang/souffle/issues/2300
https://github.com/souffle-lang/souffle/issues/2302
https://github.com/souffle-lang/souffle/issues/2309
https://github.com/souffle-lang/souffle/issues/2163
https://github.com/souffle-lang/souffle/issues/2176
https://github.com/souffle-lang/souffle/issues/2190
https://github.com/souffle-lang/souffle/issues/2300
https://github.com/souffle-lang/souffle/issues/2182
https://github.com/souffle-lang/souffle/issues/2189

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Muhammad Numair Mansur, Valentin Wüstholz, and Maria Christakis

structure. The developers called it a “nasty bug to find and fix”. Bug

6 was detected in the code generationmechanism for the interpreter.

Currently, the interpreter checks floating point number equivalence

via bitwise comparison rather than floating point comparison. The

developers confirmed the issue but need time to resolve it. Bug

14 was again caused by floating point equivalence checking in the

brie data structure. This bug, however, only manifested in compiler

mode. Bug 16 was also found in brie; it manifested when using

“auto-scheduling” for automatic performance tuning.

Formulog. Bug 7 was a non-deterministic query bug in the

procedure for computing strata, which incorrectly depended on

non-deterministic hash values. As a result, relations ended up being

computed in the wrong order.

Ascent. Bug 8 occurred because of an atom having a repeated

variable in a rule body. This case was not taken into account when

reordering atoms at runtime to increase performance.

Scallop. Bugs 9 and 11 were due to incorrect optimization con-

ditions in the query plan optimizer. Bug 10 was related to incorrect

variable deduplication in the query plan generator. Bug 12 revealed

an issue with incorrect optimization of negative atoms, and bug 13

was caused by incorrectly detecting a negative cycle between two

relations.

RQ3: Code coverage. In this research question, we evaluate the

code coverage achieved by DLSmith. We first compare it with the

coverage achieved by hand-crafted tests in the engine repositories,

which we use as seeds for DLSmith (see Sect. 7.1). We also compare

with queryFuzz when using the same seeds and with DLSmith
when using empty seeds. When using empty seeds, phase 1 of Fig. 2

generates a random precedence graph, which is then passed on to

phase 2 to generate a Datalog program. Hence, in case of an empty

seed, DLSmith generates a Datalog program from scratch. The

results are shown in Tab. 3 for Soufflé (written in C++) and Scallop

(written in Rust), where we detected the most bugs. Note that when

running queryFuzz, we use the same settings as for DLSmith, and
that all results are averages computed over three runs.

As shown in the table, DLSmith is the most effective, while

DLSmith-Empty (with empty seeds) is the least effective. When

comparing DLSmith to running the seeds alone for Scallop, we

observe a 4.8% and 7.5% increase in line and function coverage,

respectively. For Soufflé, we observe a 4.1% and 2.8% increase in line

and function coverage, respectively. When comparing DLSmith to

queryFuzz for Scallop, we observe a 3.9% and 6.7% increase in line

and function coverage, respectively. For Soufflé, we observe a 2.7%

and 2.3% increase in line and function coverage, respectively.

RQ4: Performance. The performance of DLSmith depends on the

Datalog engine under test. At the end of the second phase in Fig. 2,

DLSmith on average generates a program per 0.006 seconds (or 163

programs per second). However, as expected, it is slowed down by

the engine running each of these programs, and Tab. 4 shows by how

much. The second column computes the average time of generating

and running a single program (i.e., executing the first two phases

of Fig. 2). The graph transformer in the third phase of Fig. 2 on

average generates a transformed annotated precedence graph per

0.00035 seconds (or 2857 transformed annotated precedence graphs

per second). Note that these results are averages computed over

three runs of DLSmith, each seeded with 500 empty programs.

Table 3: Code coverage achieved by seeds alone, queryFuzz,
DLSmith with empty seeds, and DLSmith. L represents line

coverage, and F function coverage.

Datalog Seeds queryFuzz
Engine L F L F

Scallop 18,056 2,709 18,201 2,729

Soufflé 63,452 40,350 64,298 40,544

DLSmith-Empty DLSmith
L F L F

Scallop 11,388 1,826 18,915 2,912

Soufflé 50,180 30,205 66,027 41,484

Table 4: Average running time (in seconds) of DLSmithwhen

executing its first two phases.

Datalog Running

Engine Time

Ascent 17.221

DDlog 612.121

Flix 240.031

Formulog 1.512

Scallop 0.146

Soufflé 0.734

7.3 Threats to Validity

Our experimental results, and especially the detected query bugs, de-

pend on the Datalog engines we tested as well as the seed programs

that DLSmith takes as input. Regarding the former, we selected six

diverse and active Datalog implementations. Regarding the latter,

we used all (syntactically and semantically) valid test cases from

the engine repositories as seeds for DLSmith. We also perform an

experiment using only empty seeds to show their effect on our code

coverage results.

8 RELATEDWORK

In this paper, we presented the most comprehensive approach to

detecting query bugs in Datalog engines. Our approach uses meta-

morphic testing to address the oracle problem [3] by first generating

a Datalog program from its corresponding annotated precedence

graph and transforming the program by transforming its annotated

precedence graph using graph rewrite rules.

Graphs are a powerful and general notation that is used to ex-

press and model complex systems in a variety of areas in computer

science, including software engineering [22], software security [8],

program slicing [14], computer networks [37], and bioinformat-

ics [40], to name a few. Graph rewriting [42] is used to formalize

how a complex structure represented by a graph evolves over time.

Together with graph transformation [1, 2, 41], it has been exten-

sively studied in the graph theory community. Next, we discuss the

three most closely related areas of work.

Metamorphic testing.Metamorphic testing [15, 47] is a tech-

nique to effectively address the oracle problem in software testing.

It works by constructing new test cases via mutating existing ones

using metamorphic relations. These relations are then used to infer

the output of the newly generated test cases. In previous work, we

https://github.com/souffle-lang/souffle/issues/2168
https://github.com/souffle-lang/souffle/issues/2300
https://github.com/souffle-lang/souffle/issues/2309
https://github.com/HarvardPL/formulog/issues/12
https://github.com/s-arash/ascent/issues/3
https://github.com/scallop-lang/scallop-lang.github.io/issues/3
https://github.com/scallop-lang/scallop-lang.github.io/issues/7
https://github.com/scallop-lang/scallop-lang.github.io/issues/6
https://github.com/scallop-lang/scallop-lang.github.io/issues/18
https://github.com/scallop-lang/scallop-lang.github.io/issues/19

Dependency-Aware Metamorphic Testing of Datalog Engines ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

presented the first metamorphic testing approach to detect bugs in

Datalog engines [34]. Metamorphic testing has also been success-

fully used to test a variety of software applications [12, 27, 47, 57],

including other query-based systems [43, 46, 63].

Testing compilers. Ensuring the correctness of compilers is

a critical area of research, and significant effort has been devoted

to testing compilers [13, 29, 48, 58]. Csmith [58] is a popular ran-

dom program generator for C compilers that can generate large

and complex programs. Le et al. [27] proposed a metamorphic

testing approach to generate equivalent programs. The technique

inspired a number of related approaches [17, 28, 29, 49, 62] that

were used to detect hundreds of bugs in popular and widely used

compilers. YarpGen [32] is a technique for generating expressive

programs without undefined behavior to test C and C++ compilers.

Recently, such techniques have also been extended to compilers for

specialized domains, such as deep learning [31, 56] and quantum

computers [39].

Testing program analyzers. Over the past years, program

analyzers are becoming increasingly practical and are being widely

adopted to ensure reliability of critical software systems. Work

on automatically detecting bugs in program analyzers [11] and

program analysis components is, therefore, receiving increased

attention. For example, there have recently emerged techniques for

testing model checkers [26, 61], SMT solvers [5, 9, 35, 52, 54, 55, 59,

60], symbolic execution engines [25], implementations of abstract

domains [10], and dataflow analyses [50].

9 CONCLUSION

We have presented DLSmith, a novel approach for detecting query

bugs in Datalog engines using dependency-aware metamorphic test

oracles. Unlike existing, more limited, metamorphic oracles, our test

oracles use rich precedence information capturing dependencies

among relations in the program. DLSmith detected 16 previously

unknown query bugs in four Datalog engines, and our evaluation

showed that only two of these bugs could have been detected using

existing techniques.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful and con-

structive feedback. This work was supported by Maria Christakis’

ERC Starting grant 101076510.

REFERENCES

[1] Paolo Baldan, Andrea Corradini, and Barbara König. 2001. A Static Analysis

Technique for Graph Transformation Systems. In CONCUR (LNCS, Vol. 2154).
Springer, 381–395.

[2] Paolo Baldan and Barbara König. 2002. Approximating the Behaviour of Graph

Transformation Systems. In ICGT (LNCS, Vol. 2505). Springer, 14–29.
[3] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.

2015. The Oracle Problem in Software Testing: A Survey. TSE 41 (2015), 507–525.

Issue 5.

[4] Aaron Bembenek, Michael Greenberg, and Stephen Chong. 2020. Formulog:

Datalog for SMT-Based Static Analysis. In OOPSLA. ACM, 141:1–141:31.

[5] Dmitry Blotsky, Federico Mora, Murphy Berzish, Yunhui Zheng, Ifaz Kabir, and

Vijay Ganesh. 2018. StringFuzz: A Fuzzer for String Solvers. In CAV (LNCS,
Vol. 10982). Springer, 45–51.

[6] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Specifica-

tion of Sophisticated Points-To Analyses. In OOPSLA. ACM, 243–262.

[7] Neville Brent, Lexiand Grech, Sifis Lagouvardos, Bernhard Scholz, and Yannis

Smaragdakis. 2020. Ethainter: A Smart Contract Security Analyzer for Composite

Vulnerabilities. In PLDI. ACM, 454–469.

[8] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. 2006. Detecting Self-

Mutating Malware Using Control-Flow Graph Matching. In DIMVA (LNCS,
Vol. 4064). Springer, 129–143.

[9] Alexandra Bugariu and Peter Müller. 2020. Automatically Testing String Solvers.

In ICSE. ACM, 1459–1470.

[10] Alexandra Bugariu, Valentin Wüstholz, Maria Christakis, and Peter Müller. 2018.

Automatically Testing Implementations of Numerical Abstract Domains. In ASE.
ACM, 768–778.

[11] Cristian Cadar and Alastair F. Donaldson. 2016. Analysing the Program Analyser.

In ICSE. ACM, 765–768.

[12] W. K. Chan, S. C. Cheung, and Karl R. P. H. Leung. 2005. Towards a Metamorphic

Testing Methodology for Service-Oriented Software Applications. In QSIC. IEEE
Computer Society, 470–476.

[13] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan

Hao, and Lu Zhang. 2020. A Survey of Compiler Testing. Comput. Surv. 53 (2020),
4:1–4:36. Issue 1.

[14] J.-L. Chen, F.-J. Wang, and Y.-L. Chen. 1997. An Object-Oriented Dependency

Graph for Program Slicing. In TOOLS. IEEE Computer Society, 121–130.

[15] Tsong Yueh Chen, S. C. Cheung, and Siu-Ming Yiu. 1998. Metamorphic Testing: A
New Approach for Generating Next Test Cases. Technical Report HKUST–CS98–01.
HKUST.

[16] Distributed and Parallel Systems Group at the University of Innsbruck. 2012.

Insieme Compiler. http://insieme-compiler.org.

[17] Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. 2017.

Automated Testing of Graphics Shader Compilers. PACMPL 1 (2017), 93:1–93:29.

Issue OOPSLA.

[18] Antonio Flores-Montoya and Eric M. Schulte. 2020. Datalog Disassembly. In

Security. USENIX, 1075–1092.
[19] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz,

and Yannis Smaragdakis. 2018. MadMax: Surviving Out-of-Gas Conditions in

Ethereum Smart Contracts. PACMPL 2 (2018), 116:1–116:27. Issue OOPSLA.

[20] Sergio Greco and Cristian Molinaro. 2015. Datalog and Logic Databases. Morgan

& Claypool.

[21] Krystof Hoder, Nikolaj Bjørner, and Leonardo de Moura. 2011. 𝜇Z—An Efficient

Engine for Fixed Points with Constraints. In CAV (LNCS, Vol. 6806). Springer,
457–462.

[22] Susan Horwitz and Thomas W. Reps. 1992. The Use of Program Dependence

Graphs in Software Engineering. In ICSE. ACM, 392–411.

[23] Jiani Huang, Ziyang Li, Binghong Chen, Karan Samel, Mayur Naik, Le Song,

and Xujie Si. 2021. Scallop: From Probabilistic Deductive Databases to Scalable

Differentiable Reasoning. In NeurIPS. 25134–25145.
[24] Herbert Jordan, Bernhard Scholz, and Pavle Subotic. 2016. Soufflé: On Synthesis

of Program Analyzers. In CAV (LNCS, Vol. 9780). Springer, 422–430.
[25] Timotej Kapus and Cristian Cadar. 2017. Automatic Testing of Symbolic Execution

Engines via Program Generation and Differential Testing. In ASE. IEEE Computer

Society, 590–600.

[26] Christian Klinger, Maria Christakis, and Valentin Wüstholz. 2019. Differentially

Testing Soundness and Precision of Program Analyzers. In ISSTA. ACM, 239–250.

[27] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Validation via Equiv-

alence Modulo Inputs. In PLDI. ACM, 216–226.

[28] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding Deep Compiler Bugs via

Guided Stochastic Program Mutation. In OOPSLA. ACM, 386–399.

[29] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson.

2015. Many-Core Compiler Fuzzing. In PLDI. ACM, 65–76.

[30] Vladimir Lifschitz. 1988. On the Declarative Semantics of Logic Programs with

Negation. In Foundations of Deductive Databases and Logic Programming. Morgan

Kaufmann, 177–192.

[31] Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit Panda, and

Lingming Zhang. 2022. Finding Deep-Learning Compilation Bugs with NNSmith.

CoRR abs/2207.13066 (2022).

[32] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random Testing

for C and C++ Compilers with YARPGen. PACMPL 4 (2020), 196:1–196:25. Issue

OOPSLA.

[33] Magnus Madsen and Ondrej Lhoták. 2018. Safe and Sound Program Analysis

with FLIX. In ISSTA. ACM, 38–48.

[34] Muhammad Numair Mansur, Maria Christakis, and Valentin Wüstholz. 2021.

Metamorphic Testing of Datalog Engines. In ESEC/FSE. ACM, 639–650.

[35] Muhammad Numair Mansur, Maria Christakis, Valentin Wüstholz, and Fuyuan

Zhang. 2020. Detecting Critical Bugs in SMT Solvers Using Blackbox Mutational

Fuzzing. In ESEC/FSE. ACM, 701–712.

[36] William M. McKeeman. 1998. Differential Testing for Software. Digital Technical
Journal 10 (1998), 100–107. Issue 1.

[37] John M. McQuillan. 1977. Graph Theory Applied to Optimal Connectivity in

Computer Networks. Comput. Commun. Rev. 7 (1977), 13–41. Issue 2.
[38] Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective Static Race Detection

for Java. In PLDI. ACM, 308–319.

[39] Matteo Paltenghi and Michael Pradel. 2022. Bugs in Quantum Computing Plat-

forms: An Empirical Study. PACMPL 6 (2022), 1–27. Issue OOPSLA.

http://insieme-compiler.org

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Muhammad Numair Mansur, Valentin Wüstholz, and Maria Christakis

[40] Georgios A. Pavlopoulos, Maria Secrier, Charalampos N. Moschopoulos,

Theodoros G. Soldatos, Sophia Kossida, Jan Aerts, Reinhard Schneider, and Pan-

telis G. Bagos. 2011. UsingGraph Theory to Analyze Biological Networks. BioData
Min. 4 (2011). Issue 10.

[41] Karl-Heinz Pennemann. 2008. Development of Correct Graph Transformation

Systems. In ICGT (LNCS, Vol. 5214). Springer, 508–510.
[42] Detlef Plump. 1995. On Termination of Graph Rewriting. InWG (LNCS, Vol. 1017).

Springer, 88–100.

[43] Manuel Rigger and Zhendong Su. 2020. Finding Bugs in Database Systems via

Query Partitioning. PACMPL 4 (2020), 211:1–211:30. Issue OOPSLA.

[44] Leonid Ryzhyk and Mihai Budiu. 2019. Differential Datalog. In Datalog (CEUR,
Vol. 2368). CEUR-WS.org, 56–67.

[45] Arash Sahebolamri, Thomas Gilray, and Kristopher K. Micinski. 2022. Seamless

Deductive Inference via Macros. In CC. ACM, 77–88.

[46] Sergio Segura, Juan C. Alonso, Alberto Martin-Lopez, Amador Durán, Javier

Troya, and Antonio Ruiz-Cortés. 2022. Automated Generation of Metamorphic

Relations for Query-Based Systems. In MET@ICSE. ACM, 48–55.

[47] Sergio Segura, Gordon Fraser, Ana B. Sánchez, and Antonio Ruiz Cortés. 2016. A

Survey on Metamorphic Testing. TSE 42 (2016), 805–824. Issue 9.

[48] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding and Analyzing Compiler

Warning Defects. In ICSE. ACM, 203–213.

[49] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding Compiler Bugs via Live

Code Mutation. In OOPSLA. ACM, 849–863.

[50] Jubi Taneja, Zhengyang Liu, and John Regehr. 2020. Testing Static Analyses for

Precision and Soundness. In CGO. ACM, 81–93.

[51] Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais,

Florian Bünzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis

of Smart Contracts. In CCS. ACM, 67–82.

[52] Muhammad Usman, Wenxi Wang, and Sarfraz Khurshid. 2020. TestMC: Test-

ing Model Counters Using Differential and Metamorphic Testing. In ASE. IEEE
Computer Society, 709–721.

[53] John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. 2005. Using

Datalog with Binary Decision Diagrams for Program Analysis. In APLAS (LNCS,
Vol. 3780). Springer, 97–118.

[54] Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2020. On the Unusual Ef-

fectiveness of Type-Aware Operator Mutations for Testing SMT Solvers. PACMPL
4 (2020), 193:1–193:25. Issue OOPSLA.

[55] Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2020. Validating SMT

Solvers via Semantic Fusion. In PLDI. ACM, 718–730.

[56] Dongwei Xiao, Zhibo Liu, Yuanyuan Yuan, Qi Pang, and Shuai Wang. 2022.

Metamorphic Testing of Deep Learning Compilers. Proc. ACMMeas. Anal. Comput.
Syst. 6 (2022), 15:1–15:28. Issue 1.

[57] Xiaoyuan Xie, JoshuaWing Kei Ho, Christian Murphy, Gail E. Kaiser, Baowen Xu,

and Tsong Yueh Chen. 2009. Application of Metamorphic Testing to Supervised

Classifiers. In QSIC. IEEE Computer Society, 135–144.

[58] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Under-

standing Bugs in C Compilers. In PLDI. ACM, 283–294.

[59] Peisen Yao, Heqing Huang, Wensheng Tang, Qingkai Shi, Rongxin Wu, and

Charles Zhang. 2021. Fuzzing SMT Solvers via Two-Dimensional Input Space

Exploration. In ISSTA. ACM, 322–335.

[60] Peisen Yao, Heqing Huang, Wensheng Tang, Qingkai Shi, Rongxin Wu, and

Charles Zhang. 2021. Skeletal Approximation Enumeration for SMT Solver

Testing. In ESEC/FSE. ACM, 1141–1153.

[61] Chengyu Zhang, Ting Su, Yichen Yan, Fuyuan Zhang, Geguang Pu, and Zhendong

Su. 2019. Finding and Understanding Bugs in Software Model Checkers. In

ESEC/FSE. ACM, 763–773.

[62] Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal Program Enu-

meration for Rigorous Compiler Testing. In PLDI. ACM, 347–361.

[63] Zhiquan Zhou, Shaowen Xiang, and Tsong Yueh Chen. 2016. Metamorphic

Testing for Software Quality Assessment: A Study of Search Engines. TSE 42

(2016), 264–284. Issue 3.

Received 2023-02-16; accepted 2023-05-03

	Abstract
	1 Introduction
	2 Background
	2.1 Datalog Programs
	2.2 Precedence Graphs

	3 Overview
	4 Graph Annotator
	5 Graph Transformer
	5.1 Graph Rewrite Rules
	5.2 Specifying Metamorphic Transformations
	5.3 Example Metamorphic Transformations

	6 Implementation
	7 Experimental Evaluation
	7.1 Setup
	7.2 Results
	7.3 Threats to Validity

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

