
Metamorphic Relations via Relaxations:
An Approach to Obtain Oracles for Action-Policy Testing

Hasan Ferit Eniser

MPI-SWS

Germany

hfeniser@mpi-sws.org

Timo P. Gros

Saarland University, Saarland

Informatics Campus

Germany

timopgros@cs.uni-saarland.de

Valentin Wüstholz

ConsenSys

Germany

valentin.wustholz@consensys.net

Jörg Hoffmann

Saarland University, Saarland

Informatics Campus

German Research Center for Artificial

Intelligence (DFKI)

Germany

hoffmann@cs.uni-saarland.de

Maria Christakis

MPI-SWS

Germany

maria@mpi-sws.org

ABSTRACT
Testing is a promising way to gain trust in a learned action policy

𝜋 , in particular if 𝜋 is a neural network. A “bug” in this context con-

stitutes undesirable or fatal policy behavior, e.g., satisfying a failure

condition. But how do we distinguish whether such behavior is due

to bad policy decisions, or whether it is actually unavoidable under

the given circumstances? This requires knowledge about optimal

solutions, which defeats the scalability of testing. Related problems

occur in software testing when the correct program output is not

known.

Metamorphic testing addresses this issue through metamorphic

relations, specifying how a given change to the input should affect

the output, thus providing an oracle for the correct output. Yet,

how do we obtain such metamorphic relations for action policies?

Here, we show that the well explored concept of relaxations in

the Artificial Intelligence community can serve this purpose. In

particular, if state 𝑠 ′ is a relaxation of state 𝑠 , i.e., 𝑠 ′ is easier to solve
than 𝑠 , and 𝜋 fails on easier 𝑠 ′ but does not fail on harder 𝑠 , then

we know that 𝜋 contains a bug manifested on 𝑠 ′.
We contribute the first exploration of this idea in the context

of failure testing of neural network policies 𝜋 learned by rein-

forcement learning in simulated environments. We design fuzzing

strategies for test-case generation as well as metamorphic oracles

leveraging simple, manually designed relaxations. In experiments

on three single-agent games, our technology is able to effectively

identify true bugs, i.e., avoidable failures of 𝜋 , which has not been

possible until now.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ISSTA ’22, July 18–22, 2022, Virtual, South Korea
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9379-9/22/07.

https://doi.org/10.1145/3533767.3534392

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; • Computing methodologies→ Reinforcement learning.

KEYWORDS
metamorphic testing, fuzzing, action policies

ACM Reference Format:
Hasan Ferit Eniser, Timo P. Gros, ValentinWüstholz, JörgHoffmann, andMa-

ria Christakis. 2022. Metamorphic Relations via Relaxations: An Approach to

Obtain Oracles for Action-Policy Testing. In Proceedings of the 31st ACM SIG-
SOFT International Symposium on Software Testing and Analysis (ISSTA ’22),
July 18–22, 2022, Virtual, South Korea. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3533767.3534392

1 INTRODUCTION
Action policies represented by neural networks are highly success-

ful in complex, sequential decision making problems, specifically

in games [32, 38, 39] and increasingly in Artificial Intelligence (AI)

Planning [16, 19, 24, 25, 43]. Once a policy 𝜋 has been learned, it

can be used to make real-time decisions in dynamic environments,

simply by calling 𝜋 (𝑠) on the current state 𝑠 to obtain the next

action. This approach, however, comes with obvious safety con-

cerns due to potential policy bugs, i.e., undesirable or even fatal

policy behavior. Testing is a natural paradigm, given its scalability,

to address these concerns.

But what is a “bug” in this context? In many environments, un-

desirable or fatal behavior can be unavoidable – e.g., traffic making

it impossible to avoid a crash in autonomous driving, or a state in

which it is impossible for a bipedal robot to keep its balance. Such

situations are not bugs in 𝜋 as the bad behavior is not actually due

to bad policy decisions. In general, in order to know whether a situ-

ation constitutes a bug in 𝜋 , we need to know the optimal policies,

which minimize the probability of failure. This would defeat the

scalability of testing.

Prior work on testing in the sequential decision making domain

does not address this issue. It considers a “system” that takes deci-

sions in an environment and tries to find situations where a failure

https://doi.org/10.1145/3533767.3534392
https://doi.org/10.1145/3533767.3534392

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Hasan Ferit Eniser, Timo P. Gros, Valentin Wüstholz, Jörg Hoffmann, and Maria Christakis

condition 𝜙 is satisfied (e.g., [3, 12, 14, 27, 28], see [9] for a recent

overview). Such an approach implicitly assumes that a correctly

designed system – in our case, a learned action policy – can always

avoid 𝜙 . This shortcoming was recently pointed out by Steinmetz

et al. [40], who analyzed the possibility of identifying sub-optimal

policy behavior through upper- and lower-bounding techniques.

Here, we instead take inspiration from software testing, providing

an alternative technique to detect avoidable failures.

Not knowing the optimal policies is akin to not knowing the

correct output of a program. Metamorphic testing [8] addresses the

latter by testing program behavior on inputs chosen such that it

is known how the respective outputs should relate. That is, one

specifies a metamorphic relation, encompassing a relation 𝑅𝐼 over

inputs together with a corresponding necessary relation 𝑅𝑂 over

outputs. If, for inputs 𝑖, 𝑖 ′ with 𝑅𝐼 (𝑖, 𝑖 ′), the outputs 𝑜, 𝑜 ′ do not

satisfy 𝑅𝑂 (𝑜, 𝑜 ′), then we know there is a bug. Thus, 𝑅𝑂 provides

a test oracle for the correct output.
However, this oracle still requires knowledge about correct out-

puts in the form of𝑅𝑂 . For example, action decisions in autonomous

driving can be tested using metamorphic relations derived from

well known human-designed rules, such as “speed down by 25% if

rainy” [10, 42, 45]. But how do we come by metamorphic relations

in general, sequential decision making problems?

Our approach. We answer this question in terms of a relation

𝑅𝑂 , not over specific output actions 𝑎 vs. 𝑎′ of a policy, but over
the space of solutions below states 𝑠 vs. 𝑠 ′. Such relations are very

common and well explored in AI, namely in the form of over-

approximations obtained through relaxation. More specifically, as-

sume that states 𝑠 and 𝑠 ′ are related in terms of a relaxation relation

𝑅(𝑠, 𝑠 ′), identifying that 𝑠 ′ is easier to solve than 𝑠 . If 𝜋 fails on

easier 𝑠 ′ but not on harder 𝑠 , then we know that 𝜋 contains a bug

manifested on 𝑠 ′. This is our key insight: relaxations provide a means
to specify metamorphic relations, and thus, a test oracle in general,
sequential decision making problems. Furthermore, this approach

captures sequential policy behavior, rather than merely immediate

outputs as in all other works on metamorphic testing.

As indicated by our notation above, we focus on state relaxations
𝑅, which modify only the state and not any other aspects of the

agent’s task. Such relaxations are often quite natural and easy to

obtain. For example, when obstacles need to be avoided, states

can be relaxed by removing obstacles; when resources are limited,

relaxations can increase resource availability; when there are time

constraints, these constraints can be relaxed (e.g., by postponing a

deadline).

In this paper, we do not yet investigate the automatic generation

of such relaxations. Instead, we perform case studies in three 2D-

world single-agent games involving (fixed or moving) obstacles, and

manually design relaxation relations 𝑅(𝑠, 𝑠 ′), where 𝑠 ′ has easier-
to-avoid obstacles. It is important to note that, while this involves

manual per-domain labor, it requires hardly any domain knowledge
– relaxing obstacles is trivial. This is in stark contrast to knowing

the difference between the optimal solutions for 𝑠 and 𝑠 ′, which
constitutes the kind of knowledge we would need in order to design

a traditional metamorphic output relation 𝑅𝑂 .

Nevertheless, the automated design of relaxations in our context,

including ones going beyond state relaxations, remains of course an

important topic for future work. For this, there is huge potential to

draw on the literature on relaxation design for heuristic functions

i.e., to compute lower bounds on goal distance (e.g., [6, 11, 13, 21]).

This is non-trivial though for a variety of reasons. In particular,

rather than relaxing radically to obtain an efficiently computable

heuristic function, we need to relax cautiously, in small steps, to be

able to identify bugs.

Our testing framework addresses Markov decision processes

(MDPs), of which we require access only to a simulator (given state

𝑠 and action 𝑎, output an outcome state 𝑠 ′). For test-state generation,
we take inspiration from fuzzing [1, 2, 30], which mutates program

inputs randomly with a bias to maximize diversity. We transfer

this idea to our setting by taking input mutations to be random

action applications, and measuring test-state diversity in terms of

Euclidean distance.

We implemented our techniques in a framework we call 𝜋-fuzz.

We evaluate 𝜋-fuzz on three single-agent games, with policies

learned by reinforcement learning. Our experiments show that

fuzzing is effective in generating a diverse set of states, and that

our metamorphic oracles are able to identify thousands of unique

bugs even in well trained policies. (The source code of 𝜋-fuzz and

all data necessary to reproduce our experiments are available at

https://github.com/Practical-Formal-Methods/pi-fuzz.)

Contributions. In short, we make the following contributions:

• We introduce the first technique for metamorphic testing of

action policies. Our key insight is to use the concept of re-

laxations to design novel oracles that do not require optimal

policies.

• We propose the 𝜋-fuzz fuzzing framework, which combines

a fuzzer for action policies with metamorphic test oracles.

• We evaluate 𝜋-fuzz on three single-agent games, with poli-

cies learned by reinforcement learning.

Outline. The rest of this paper is organized as follows. Section 2

reviews related work. Section 3 provides background on the general

setting and introduces notation. Section 4 gives an overview of 𝜋-

fuzz. In Section 5, we formally define “policy bugs”, and in Section 6,

we describe our metamorphic test oracles. In Section 7, we describe

our fuzzing component before introducing our three case studies

in Section 8. Finally, we evaluate 𝜋-fuzz in Section 9 and conclude

in Section 10.

2 RELATEDWORK
Testing neural networks. Testing neural networks is a well

studied field in the literature. However, most of this work focuses

only on a single invocation of a neural network, for example, in

the case of image classifiers. For instance, there are several tech-

niques that introduce test coverage criteria at the neural-network

level [18, 26, 29, 35] for more efficient testing. Sun et. al. [41] de-

vise a technique for concolic testing of neural networks. Wang

et. al. [44] detect adversarial inputs by using ideas from mutation

testing. Finally, there are some existing testing techniques that

use metamorphic relations in specific domains, such as automated

driving [10, 42, 45], object detection [46], and translation [20].

However, applying such existing work to test reinforcement

learning (RL) policies is non-trivial since such policies are typically

https://github.com/Practical-Formal-Methods/pi-fuzz

Metamorphic Relations via Relaxations: An Approach to Obtain Oracles for Action-Policy Testing ISSTA ’22, July 18–22, 2022, Virtual, South Korea

assessed by the total reward at the end of a sequence of decisions

(i.e., multiple network invocations) that are taken from a given ini-

tial state. Differentially testing the optimality of each decision in the

sequence is impractical in many real-world domains since it would

require access to an optimal policy. Apart from that, the afore-

mentioned approaches for metamorphic testing of autonomous

driving decisions [10, 42, 45] are domain specific and leverage hu-

man knowledge in the form of driving rules – knowledge about

solutions that is not available in general.

On the other hand, our approach only relies on relaxation re-

lations, which are typically straightforward and apply to a wide

range of domains. To nevertheless provide an empirical comparison

to rule-based approaches, we experiment with simple “change noth-

ing” rules. These define metamorphic relations prescribing that, if

𝑠 ′ is a relaxation of 𝑠 , then what works for harder 𝑠 should also

work for easier 𝑠 ′ – the policy should not change. However, this

may inaccurately classify 𝑠 ′ as a bug, leading to false positives (lack
of precision). Further, our experiments show that this method has

lower recall (more false negatives) than ours.

Bug finding for decision making policies. There is recent

work on finding falsifying inputs for RL-based decision making

policies in hybrid systems [3, 9, 12, 14, 27, 28]. Unlike 𝜋-fuzz, these

techniques do not address scenarios where the policy is expected to

fail (e.g., unavoidable crash state). As mentioned earlier, Steinmetz

et al. [40] recently pointed this out and used upper- and lower-

bounding techniques to identify sub-optimal policy behavior. In

contrast, our work takes inspiration from metamorphic testing to

ensure that the identified failures are avoidable.

A recent study [34] focuses on testing deep NN models solving

MDPs via techniques such as reinforcement learning and imitation

learning [22]. They develop a fuzzer that is guided by a heuristic

novelty measure to detect crash triggering initial states. There are

three key differences with our work: (1) Their state mutations em-

ploy hand-crafted bounds to suppress bugs due to unavoidable crash

states. Configuring these bounds can be difficult, if not impossible,

for complex domains. In contrast, our approach by construction

never reports bugs due to unavoidable crashes. (2) Bounds that limit

the magnitude of each mutation may result in insufficient explo-

ration of the input space. In 𝜋-fuzz, such bounds are not necessary.

(3) The aforementioned work can identify only crash-triggering

states. In contrast, our approach can easily be generalized to identify

states on which the reward is less than expected.

Safe reinforcement learning. There exists a large body of work
on safe reinforcement learning [4, 5, 23]. On a high level, safe rein-

forcement learning refers to training RL agents that are guaranteed

to satisfy given specifications (see Garcia et al. [15] for an overview).

While safe RL and policy testing share the same goals, their methods

are fundamentally different. However, we can imagine interesting

combinations as part of our future work; for instance, by feeding

detected bugs back into policy re-training, testing may become part

of a larger safe-RL loop.

3 CONTEXT AND NOTATIONS
Our methods address discrete-time Markov decision processes as

follows. An MDP is a tuple 𝑀 = (𝑆,𝐴,𝑇 , 𝑆0) of states 𝑆 ; actions

𝐴; transition probability function 𝑇 : 𝑆 × 𝐴 ↦→ D(𝑆), where
D(𝑆) denotes the set of probability distributions over 𝑆 ; and initial
states 𝑆0 ⊆ 𝑆 (of which one 𝑠0 ∈ 𝑆0 will be chosen randomly at

execution time).

A policy, also agent, is a function 𝜋 : 𝑆 ↦→ 𝐴 that chooses

actions in 𝑆 . We consider policies 𝜋 represented by neural networks.

The policy is typically trained to maximize rewards associated

with states or state transitions. Our approach is agnostic to how

this is done. A run of a policy 𝜋 on an (arbitrary) state 𝑠0 ∈ 𝑆

is a state/action sequence 𝜎 = ⟨𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . ⟩, where, for all 𝑖 ,
𝑎𝑖 = 𝜋 (𝑠𝑖) and 𝜇 (𝑠𝑖+1) > 0, where 𝜇 = 𝑇 (𝑠𝑖 , 𝑎𝑖) and 𝜇 (𝑠𝑖+1) denotes
the probability of reaching state 𝑠𝑖+1 from 𝑠𝑖 by taking action 𝑎𝑖 .

Note that this definition of policy is restricted in terms of being

memoryless and deterministic. Both restrictions can be lifted in

principle, but deterministic memoryless policies are relevant in their

own right and form a natural starting point for the investigation of

metamorphic action-policy testing.We assume that 𝜋 is represented

as an NN classifier whose final layer can also be interpreted as a

probability distribution 𝜋 (𝑠) ∈ D(𝐴) over actions. We make use of

the latter in fuzzing, by sampling 𝜋 (𝑠) in order to explore MDPs in

which random actions do not lead to interesting states.

We assume a given non-temporal failure condition 𝜙 that

should be avoided by the agent – exploring our approach for tem-

poral 𝜙 remains a topic for future work. We say that a run 𝜎 fails
if there exists 𝑠𝑖 along 𝜎 such that 𝑠𝑖 |= 𝜙 ; otherwise, we say that 𝜎

succeeds. We denote by 𝑃𝜙 (𝜋, 𝑠) the probability that the run of 𝜋

on 𝑠 fails, and by 𝑃∗
𝜙
(𝑠) the minimal such probability achieved by

any policy.

We do not assume that we have a declarative model of 𝑀 ; a

simulator suffices to apply our methods. We merely assume that

the representation of states is state-variable based, i.e., each 𝑠 is

uniquely identified by a value assignment to a vector of state
variables (𝑣1, . . . , 𝑣𝑛). The domains of the state variables do not

matter to our approach as long as Euclidean distance can be defined

(needed in our state-diversity notion). For simplicity, we assume

that the state variables are real-valued in this paper, i.e., states 𝑠

map each 𝑣𝑖 to R.
We refer to the simulator as the environment, denoted 𝐸. It

provides the programmatic interfaces 𝐸.randomInit(), which re-

turns a random initial state 𝑠0 ∈ 𝑆0; 𝐸.setState(𝑠), which sets the

environment state to 𝑠 ∈ 𝑆 ; and 𝐸.step(𝑠, 𝑎), which, given 𝑠 ∈ 𝑆

and 𝑎 ∈ 𝐴, picks and outputs a state 𝑠 ′ according to the distribution
𝑇 (𝑠, 𝑎).

We furthermore assume that 𝐸 has a parameter 𝜌 – the random

seed – and an interface 𝐸.setSeed(𝑟) setting 𝜌 := 𝑟 . We use this

interface in part of our methodology to fix specific environment

behaviors and identify bugs pertaining to those. Namely, whenever

we check whether 𝜋 contains a bug manifested below a state 𝑠 , we

call 𝐸.setSeed(𝑟) directly before running 𝜋 on 𝑠 , determinizing 𝑇

as a function of state, action, and run length so far. We denote the

resulting unique run of 𝜋 on 𝑠 given random seed 𝑟 by 𝐸𝑟 .𝜎 [𝜋, 𝑠].

4 𝜋-FUZZ POLICY FUZZING FRAMEWORK
Figure 1 provides a high-level overview of our 𝜋-fuzz policy-testing

framework. As shown in the figure, 𝜋-fuzz takes as input a policy

under test 𝜋 and an environment 𝐸. The framework consists of two

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Hasan Ferit Eniser, Timo P. Gros, Valentin Wüstholz, Jörg Hoffmann, and Maria Christakis

S1 S2 S3

S S’ X discard

add
Fuzzer

Pool

Oracle

Random Walks

Bugs

π

π-fuzz Policy Testing Framework

S’

S

Policy

Environment

Diversity
Filter

Duplicate Filter

Figure 1: Overview of 𝜋-fuzz framework.

main components: the fuzzer, which generates a diverse pool of

test states 𝑠𝑖 ; and the oracle, which identifies policy bugs among

these test states. The fuzzer uses random walks to generate new

states, which are then filtered by diversity to obtain the pool. We

will describe our fuzzing algorithm in detail in Section 7. Our key

contribution is the design of the oracle, via metamorphic relations

based on relaxations. A duplicate filter at the end of this pipeline

serves to provide unique bugs as the output of 𝜋-fuzz.

Our 𝜋-fuzz framework is implemented as a generic policy tester,

independent of any specific environment (in fact, we use the same

implementation across our case studies in this paper). The input in-

terface for 𝜋-fuzz consists of the neural network representation of 𝜋 ,

in the PyTorch format; the aforementioned programmatic interface

of 𝐸 implementing 𝐸.randomInit(), 𝐸.setState(𝑠), 𝐸.step(𝑠, 𝑎) and
𝐸.setSeed(𝑟); as well as a programmatic interface for metamorphic

operations underlying the oracle, explained in Section 6.

5 POLICY BUGS
In our context, we consider two notions of “policy bugs”, one of

which is specific to a fixed environment behavior, while the other

quantifies over all possible such behaviors.

Definition 1 (Bug). Let 𝑀 = (𝑆,𝐴,𝑇) be an MDP, 𝐸 a simulator

for𝑀 , 𝜋 a policy, and 𝑠 ∈ 𝑆 a state.

(i) We say that 𝑠 is a bug in 𝜋 if 𝑃𝜙 (𝜋, 𝑠) > 𝑃∗
𝜙
(𝑠).

(ii) Given a random seed 𝜌 = 𝑟 , we say that the run 𝐸𝑟 .𝜎 [𝜋, 𝑠] is
a seed-bug in 𝜋 if 𝐸𝑟 .𝜎 [𝜋, 𝑠] fails, but there exists a policy 𝜋 ′

such that 𝐸𝑟 .𝜎 [𝜋 ′, 𝑠] succeeds.

Bugs (i) arguably capture the canonical understanding of policy

bugs when testing for failure avoidance in a probabilistic environ-

ment. Seed-bugs (ii) are an approximation that allows to consider

individual environment behaviors. If 𝜋 fails but 𝜋 ′
succeeds given

the same random seed, then this indicates that 𝜋 is faulty. This is,

however, not necessarily the case: (ii) does not in general imply

(i) because the decisions causing failure on 𝑟 may be beneficial for

other environment behaviors. Hence, (ii) is merely a pragmatical

proxy for (i). That said, (i) and (ii) coincide for deterministic en-

vironments; and in our case studies, most states 𝑠 with seed-bugs

found by our metamorphic oracles are in fact bugs. Moreover, (ii) is

much faster to evaluate than (i), which makes it useful for practical

purposes.

Note that seed-bugs are best characterized by the actual run

𝐸𝑟 .𝜎 [𝜋, 𝑠], rather than state 𝑠 alone, as there can be many different

environment behaviors below 𝑠 and only some of them may exhibit

the observed failure.

6 METAMORPHIC ORACLES
In this section, we explain the principle of relaxation-based meta-

morphic oracles, specify the oracles used in our case studies, and

discuss how suitable relaxations may be obtained in general, espe-

cially when considering the relaxation literature.

6.1 Metamorphic Oracles via Relaxation
Obviously, Definition 1 cannot be tested efficiently on large state

spaces. We adapt the idea of metamorphic testing to solve this issue.

The key element is a state relaxation:

Definition 2 (State Relaxation). Let 𝑀 = (𝑆,𝐴,𝑇) be an MDP,

and 𝐸 a simulator for 𝑀 . We say that 𝑡 ∈ 𝑆 relaxes 𝑠 ∈ 𝑆 if, for

every policy 𝜋𝑠 , there exists a policy 𝜋𝑡 such that, for every random

seed 𝜌 = 𝑟 , whenever 𝐸𝑟 .𝜎 [𝜋𝑠 , 𝑠] succeeds, then 𝐸𝑟 .𝜎 [𝜋𝑡 , 𝑡] also
succeeds.

We say that𝑅 ⊆ 𝑆×𝑆 is a (state) relaxation if, for every (𝑠, 𝑡) ∈ 𝑅,

𝑡 relaxes 𝑠 .

We will illustrate and discuss this definition below. In a nutshell,

a relaxed state 𝑡 allows to adapt any policy for 𝑠 to achieve the

same (or more) failure-avoidance ability. In that sense, intuitively,

“𝑡 is easier to solve than 𝑠”. Definition 2 captures the most general

condition under which this is the case, and where our metamorphic

oracles hence work as intended.

Namely, the idea is quite simple: if 𝑡 is easier to solve than 𝑠 , but

the policy 𝜋 is worse on 𝑡 than on 𝑠 , then 𝜋 ’s behavior on 𝑡 must

be wrong:

Proposition 3 (Metamorphic Oracle). Let 𝑀 = (𝑆,𝐴,𝑇) be an

MDP, 𝐸 a simulator for𝑀 , and 𝑅 a relaxation. Let 𝑠, 𝑡 ∈ 𝑆 be states

such that (𝑠, 𝑡) ∈ 𝑅. We have:

(i) If 𝑃𝜙 (𝜋, 𝑠) < 𝑃𝜙 (𝜋, 𝑡), then 𝑡 is a bug in 𝜋 .

Metamorphic Relations via Relaxations: An Approach to Obtain Oracles for Action-Policy Testing ISSTA ’22, July 18–22, 2022, Virtual, South Korea

(ii) If 𝐸𝑟 .𝜎 [𝜋, 𝑠] succeeds but 𝐸𝑟 .𝜎 [𝜋, 𝑡] fails, then 𝐸𝑟 .𝜎 [𝜋, 𝑡] is a
seed-bug in 𝜋 .

Proof. (i): First, note that we have 𝑃∗
𝜙
(𝑠) ≥ 𝑃∗

𝜙
(𝑡): Given a pol-

icy 𝜋∗𝑠 that minimizes the probability of failure on 𝑠 , by Definition 2

there exists a policy 𝜋𝑡 for 𝑡 that succeeds in all cases where 𝜋
∗
𝑠 does.

Hence, 𝑃𝜙 (𝜋∗𝑠 , 𝑠) ≥ 𝑃𝜙 (𝜋𝑡 , 𝑡), showing that 𝑃𝜙 (𝜋∗𝑠 , 𝑠) ≥ 𝑃𝜙 (𝜋∗𝑡 , 𝑡)
for any policy 𝜋∗𝑡 that minimizes the probability of failure on 𝑡 . To-

gether with prerequisite (i), we get 𝑃𝜙 (𝜋, 𝑡) > 𝑃𝜙 (𝜋, 𝑠) ≥ 𝑃∗
𝜙
(𝑠) ≥

𝑃∗
𝜙
(𝑡), which shows the claim.

(ii): By prerequisite, the run of 𝜋 on 𝑠 given random seed 𝑟

succeeds, and (𝑠, 𝑡) ∈ 𝑅. Hence, by Definition 2, there exists a

policy 𝜋𝑡 for which the run on 𝑡 given 𝑟 succeeds. As the latter is

not the case for 𝜋 , 𝐸𝑟 .𝜎 [𝜋, 𝑡] is a seed-bug in 𝜋 . □

To illustrate Definition 2 and the kind of practical relaxations

we employ in our experiments, let us briefly consider the case

studies we contribute. We experiment with three games (Highway,

LunarLander, BipedalWalker) where an agent moves in a 2D-world

and needs to reach a target positionwhile avoiding (fixed ormoving)

obstacles. In each case, our relaxation relation 𝑅 modifies the game

landscape, making obstacles easier to avoid. Figure 2 (see Section 8)

illustrates this. For each of the three games, the figure shows a state

𝑠 on the left and a relaxed state 𝑡 on the right.

Highway involves a car (red car in Figure 2a) navigating traffic

on a 2-lane highway. Less traffic is easier to navigate. In the sense

of Definition 2, whenever 𝜋𝑠 manages to avoid crashing into traffic

when started from 𝑠 , we can achieve the same when starting from 𝑡

simply by taking the same driving decisions; i.e., the desired policy

𝜋𝑡 behaves like 𝜋𝑠 on the corresponding states. If the policy 𝜋 under

test takes different decisions on 𝑡 , which crashmore frequently, then

𝜋 exhibits a bug on 𝑡 . The other two games are similar in this regard:

whenever 𝜋𝑠 manages to avoid crashing on 𝑠 , the same decisions

avoid a crash on 𝑡 , and so 𝑡 relaxes 𝑠 according to Definition 2.

A remarkable special case of Definition 2 is that of deterministic

transitions, like in BipedalWalker where there is no noise in the

effect of the robot’s motor commands. In this case, the run of a

policy from a state is unique, and 𝑡 relaxes 𝑠 if and only if either

𝑡 is solvable (a succeeding policy exists), or 𝑠 is unsolvable; in

particular, all solvable states relax each other. This is very generous

from a formal point of view, but it still makes perfect sense for

bug detection: if 𝑠 is solvable and 𝑅(𝑠, 𝑡), then we know that 𝑡 is

solvable. This is precisely the most general condition under which

we can detect avoidable failures by comparing the behavior of 𝜋

across states 𝑠, 𝑡 : if 𝑅(𝑠, 𝑡) and 𝜋 succeeds on 𝑠 , then 𝑡 is solvable, so

failure of 𝜋 on 𝑡 constitutes a bug. Practical relaxation methods will,

of course, instantiate the broad frame of Definition 2 with much

more restrictive relations over states, like the relaxations in our

case studies.

6.2 Metamorphic Oracles in our Case Studies
Given a state relaxation 𝑅 as per Definition 2, Proposition 3 provides

a tool to detect bugs and seed-bugs. We turn this into practical ora-

cles for 𝜋-fuzz by sampling 𝑅 a given number of times. Algorithm 1

specifies three different oracles along these lines. Let us discuss

them from top to bottom.

Algorithm 1:Metamorphic oracles

1 Function BugOracle(𝑅, 𝜋, 𝑠𝑖):
2 evaluate 𝑃𝜙 (𝜋, 𝑠𝑖);
3 repeat ORACLE_BUDGET times
4 𝑡𝑖 = randomState({𝑡𝑖 | 𝑅(𝑡𝑖 , 𝑠𝑖)});
5 evaluate 𝑃𝜙 (𝜋, 𝑡𝑖);
6 if 𝑃𝜙 (𝜋, 𝑡𝑖) < 𝑃𝜙 (𝜋, 𝑠𝑖) then
7 return 1

8 return 0;

9 Function BasicSeedBugOracle(𝑅, 𝜋, 𝑠𝑖 , 𝑟):
10 if 𝐸𝑟 .𝜎 [𝜋, 𝑠𝑖] fails then
11 repeat ORACLE_BUDGET times
12 𝑡𝑖 = randomState({𝑡𝑖 | 𝑅(𝑡𝑖 , 𝑠𝑖)});
13 if 𝐸𝑟 .𝜎 [𝜋, 𝑡𝑖] succeeds then
14 return 1

15 return 0;

16 Function ExtSeedBugOracle(𝑅, 𝜋, 𝑠𝑖 , 𝑟):
17 𝐵 = {};
18 if 𝐸𝑟 .𝜎 [𝜋, 𝑠𝑖] succeeds then
19 repeat ORACLE_BUDGET times
20 𝑡𝑖 = randomState({𝑡𝑖 | 𝑅(𝑠𝑖 , 𝑡𝑖)});
21 if 𝐸𝑟 .𝜎 [𝜋, 𝑡𝑖] fails then
22 𝐵 = 𝐵 ∪ {𝐸𝑟 .𝜎 [𝜋, 𝑡𝑖]};

23 return 𝐵;

The BugOracle algorithm checks whether a given test-pool

state 𝑠𝑖 generated by 𝜋-fuzz can be identified to be a bug. It does

so by comparing 𝑃𝜙 (𝜋, 𝑠𝑖) with 𝑃𝜙 (𝜋, 𝑡𝑖) for unrelaxed states 𝑡𝑖 , i.e.,

harder states where 𝑅(𝑡𝑖 , 𝑠𝑖). By Proposition 3, if the Boolean return

value is 1, then 𝑠𝑖 is a bug in 𝜋 . Evaluating 𝑃𝜙 here is a sub-problem,

and solving it precisely is intractable in itself for large state spaces.

In our implementation, we approximate 𝑃𝜙 by sample runs.

The BasicSeedBugOracle algorithm proceeds in a similar man-

ner, but checks for seed-bugs instead. The random seed 𝑟 is an input

to the oracle (set by the fuzzer, see Section 7) as the oracle’s job

is to identify bugs given a fixed environment behavior. The oracle

returns 1 if 𝜋 fails on the test state 𝑠𝑖 but succeeds on one of the

unrelaxed states 𝑡𝑖 . By Proposition 3, 𝐸𝑟 .𝜎 [𝜋, 𝑠𝑖] is a seed-bug in

this case.

Finally, ExtSeedBugOracle is an extension that applies in case

𝜋 succeeds on the test state 𝑠𝑖 given 𝑟 . In this case, 𝐸𝑟 .𝜎 [𝜋, 𝑠𝑖]
cannot be a seed-bug, but we may be able to identify relaxed states

𝑡𝑖 as seed-bugs instead. The oracle leverages this possibility in the

obvious manner. In our case studies, many additional seed-bugs

are found in this way. Note that we can define a similar extended

version of BugOracle; however, such an oracle would be very

slow.

To sample the relaxation relation 𝑅, our implementation in 𝜋-

fuzz assumes that 𝑅 is given in the form of a set of metamorphic
operations: state-modification operators that either relax the given

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Hasan Ferit Eniser, Timo P. Gros, Valentin Wüstholz, Jörg Hoffmann, and Maria Christakis

state (e.g., by removing obstacles) or unrelax it (e.g., by adding ob-

stacles). The sampling then simply consists in applying a randomly

chosen metamorphic operation with randomly chosen parameters

(e.g., which obstacles to remove, or where to add new obstacles).

Importantly, the magnitude of metamorphic operations affects

oracle efficacy. If 𝜋 works well on 𝑠𝑖 and 𝑡𝑖 is much easier, it is un-

likely that the policy is bad on 𝑡𝑖 , thus not leading to the detection

of a bug. If 𝜋 is bad on 𝑠𝑖 and 𝑡𝑖 is much harder than 𝑠𝑖 , it is unlikely

that the policy works well on 𝑡𝑖 , again not leading to the detection

of a bug. Therefore, in both directions, metamorphic operations

should be applied cautiously, making small modifications only. Our

operations modifying individual state attributes naturally support

this. Also, for this reason, we do not chain over metamorphic opera-

tions, always applying only a single such operation when sampling

𝑅 in Algorithm 1.

Section 8 outlines the metamorphic operations we use in each of

our case studies. The algorithm parameter ORACLE_BUDGET is set

to 500 in all our experiments.

6.3 Discussion: How To Obtain Relaxations
How can state relaxations for metamorphic oracles be obtained? In

some special cases, relaxations modifying individual state attributes

are actually quite easy to come by. Wherever obstacle avoidance

plays a role, we can define metamorphic operations making obsta-

cles easier to avoid, as in our case studies. Other simple examples

include MDPs where resources, like fuel or energy, are consumed:

we can then relax states by increasing the amounts of resources

available. Similarly to this, if the MDP involves (discrete-time) dead-

lines by which something needs to be achieved, then states can be

relaxed by postponing the deadlines. More generally, if some actions

are possible only within given discrete-time time windows, then

we can relax states by broadening those time windows. Note that

such resource and time-constraint relaxations can potentially even

be obtained fully automatically, as the metamorphic operations

needed are generic (add resource/expand time-window border).

It remains, of course, an important question whether and howwe

can tap into the potential of research on relaxations in AI, where

relaxations have been intensively investigated for the design of

heuristic functions, i.e., to compute lower bounds on goal distance

(e.g., [6, 11, 13, 21]). The adaptation of these methods to our con-

text is highly non-trivial as relaxations underlying heuristic func-

tions make strong problem simplifications (e.g., abstractions over-

approximating transition behavior). This is in contrast to our need

for cautious relaxation in small steps, as outlined above.

Another, perhaps more promising, source of state relaxations can

be simulation relations [17, 31], where 𝑅(𝑠, 𝑡) holds – 𝑡 simulates

𝑠 – iff for every outgoing transition of 𝑠 there is a correspond-

ing outgoing transition in 𝑡 , leading to simulating outcome states

𝑅(𝑠 ′, 𝑡 ′). Such relations can potentially be extracted automatically

if a declarative model of the MDP is available.

7 FUZZING ALGORITHM
We now discuss the fuzzer component from Figure 1 in more detail.

The fuzzer builds up a pool of diverse states by relying on two sub-

components, namely randomwalks and diversity analysis. Consider

the pseudo-code in Algorithm 2.

Algorithm 2: Fuzzing procedure

1 Function Fuzzer(Env 𝐸, Policy 𝜋):
2 𝑃 = [];

3 𝑃 = add(𝐸.randomInit(), 𝑃);

4 while ¬interrupted() do
5 if randomBoolean(INC_PROB) then
6 𝑠 = randomState(𝑃);

7 else
8 𝑠 = 𝐸.randomInit();

9 𝑠 ′ = randomWalk(𝐸, 𝜋 , 𝑠);

10 if min𝑡 ∈𝑃 𝑑Eucl (𝑠 ′, 𝑡) > DIV_THRESH then
11 𝑃 = add(𝑠 ′, 𝑃);

12 for each 𝑠𝑖 ∈ 𝑃 do
13 Run oracle on 𝑠𝑖 (picking 𝑟 if needed);

14 Function randomWalk(Env 𝐸, Policy 𝜋 , State 𝑠):
15 𝐸.setState(𝑠);

16 𝑘 = randomIntRange(0, WALK_LENGTH);

17 if randomBoolean(POL_PROB) then
18 repeat 𝑘 times
19 𝑎 = randomPolicyAction(𝜋 (s));

20 𝑠 = 𝐸.step(𝑠 , 𝑎);

21 else
22 repeat 𝑘 times
23 𝑎 = randomAction(𝐸.actions);

24 𝑠 = 𝐸.step(𝑠 , 𝑎);

25 return 𝑠;

First, the fuzzer adds a random initial state to the pool of states

𝑃 (line 3). Until the fuzzer is interrupted (e.g., via a user-provided

time limit), it tries to incrementally expand 𝑃 . To do so, it randomly

decides (biased by a probability provided in parameter INC_PROB
on line 5) to either select a random state from the pool (line 6)

or select a new random initial state (line 8). Utilizing previously

generated states (from the pool) allows us to explore the state space

much more effectively as they are used as stepping stones to delve

into unexplored territory. A random walk is then conducted on the

resulting state 𝑠 to obtain a new candidate state 𝑠 ′ (line 9). If 𝑠 ′ is
sufficiently diverse, it is added to 𝑃 (lines 10 – 11). Here, 𝑑Eucl (𝑠, 𝑠 ′)
is the Euclidean distance between 𝑠 and 𝑠 ′, and DIV_THRESH sets a

threshold for the minimum distance to the states already in pool 𝑃 .

Once pool 𝑃 is final, an oracle is called on each state 𝑠𝑖 ∈ 𝑃

(lines 12 – 13). If the oracle requires a fixed random seed – like the

two seed-bug oracles from Algorithm 1 – then the fuzzer chooses

that seed here. Note that, to check for bugs in different environment

behaviors, the oracle would need to be called with several seeds.

Here, we show that many seed-bugs can be found even when only

trying a single seed for each 𝑠𝑖 .

The diversity filter serves (similarly as in software testing) for

higher confidence in 𝜋 ’s ability to avoid failure, based on broad tests.

Diversity of program inputs is typically facilitated by only adding

inputs to the pool if they increase some form of code coverage (e.g.,

Metamorphic Relations via Relaxations: An Approach to Obtain Oracles for Action-Policy Testing ISSTA ’22, July 18–22, 2022, Virtual, South Korea

statement, branch, or path coverage). Recently, several coverage

criteria for NNs have emerged, such as neuron coverage [35] in the

context of NN robustness testing. In 𝜋-fuzz, we take inspiration

from a coverage criterion [33] based on the Euclidean distance

between activation vectors for a given NN layer. Here, we apply

this criterion to states – i.e., the NN input vectors – instead.

The randomWalk procedure conducts random walks in the

usual manner, with one noteworthy design decision. Rather than

always choosing actions uniformly at random (line 23), the algo-

rithm sometimes samples the policy under test instead (line 19;

recall that 𝜋 (𝑠) ∈ D(𝐴) interprets the final layer of the NN policy

as a probability distribution over actions). The parameter POL_PROB
(line 17) controls the trade-off between these two choices. Sampling

the policy makes sense when random actions do not tend to lead to

interesting states, e.g., because states quickly become unsolvable.

Indeed, as our empirical results show, this method yields advantages

in all our case studies.

Regarding the parameters of Algorithm 2, in preliminary experi-

ments we found that INC_PROB = 0.8 tends to work well across all

of our case studies (for smaller values, exploration is insufficient),

so we fix this parameter value. Similarly, we fix POL_PROB = 0.2

(for larger values, exploration is insufficient). For DIV_THRESH and

WALK_LENGTH, good values depend on domain-specific aspects, i.e.,

typical scale of state diversity, typical run length, typical level of

risk incurred by long random walks. We, hence, fix specific values

for each domain, listed as part of our case study descriptions in the

next section. For POL_PROB and DIV_THRESH, interesting algorithm
performance differences arise from setting them to 0 vs. > 0, so we

evaluate these settings in our experiments.

8 CASE STUDIES
We apply our 𝜋-fuzz framework to three case studies, called High-

way, LunarLander, and BipedalWalker. Illustrations of their envi-

ronments are shown in Figure 2. LunarLander and BipedalWalker

are popular Gym [7] environments specialized for continuous con-

trol. We developed Highway as a new benchmark that simulates a

simplified autonomous-driving task, navigating a highway through

speed and lane changes in a way that avoids collisions with traffic.

In all these case studies, the failure condition 𝜙 is given in terms

of a specific environment state in which the agent ends up when

it crashes into an obstacle. All agents were trained on a Debian 10

machine with 768 GB of memory, 32 CPUs (Intel(R) Xeon(R) Gold

6134M), and 2 GPUs (V100 Nvidia Tesla with 32 GB of memory).

We next describe each case study, including the domain itself,

the algorithms and parameters we used for learning the policy 𝜋 ,

the metamorphic operations for the oracle, and the domain-specific

settings of DIV_THRESH and WALK_LENGTH.

8.1 Highway
The Highway domain consists of a two-lane, finite-length street.

The left lane is for speed maniacs, who are relatively fast, and the

right lane is for safety freaks, who are slow. Neither of these actors

may change lanes, and their speed is constant. The agent appears at

the beginning of the street, and the task is to reach the end without

crashing into other cars. There are five discrete actions: switch lane

to right or left, speed up, slow down, noop. Other cars may enter

state 𝑠 relaxed state 𝑡

(a)

(b)

(c)

Figure 2: Illustrations of domains and relaxations (as per
Definition 2) used in our evaluation: (a) Highway, (b) Lu-
narLander, and (c) BipedalWalker.

or leave the highway stochastically while the agent is moving. In

case of a crash, the game ends immediately with a reward of −100
points. Reaching the end of the street is rewarded with +100 points.
The discount factor is 𝛾 = 0.95, incentivizing the agent to drive fast.

Given the road length, the best-case achievable reward is ca. 30.

Policy training. We train the agent using our own implemen-

tation of DQN [32]. It is well trained, achieving an average reward

of 21 points (after 20000 training episodes).

Metamorphic operations. Relaxed states are generated by re-

moving a random car ahead of the agent, thus reducing the chance

of crashing (see Figure 2a). Conversely, unrelaxed states are gener-

ated by adding a car at a safe distance from the agent (not leading

to unavoidable crashes).

DIV_THRESH and WALK_LENGTH. We set DIV_THRESH to 3.6 to

capture the typical scale of diversity in this domain, which we

gauged by inspecting the visual differences between states. We

set WALK_LENGTH to 3 to balance the typical risk of random walks,

which quickly lead to crashes in this domain.

8.2 LunarLander
The LunarLander domain consists of an uneven lunar surface and a

lander with two legs. The lander appears at the top of the environ-

ment with a random velocity vector, and the task is to land it on

its legs – if the body touches the surface, the lander crashes. There

are four discrete actions: firing the bottom engine, the left-hand

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Hasan Ferit Eniser, Timo P. Gros, Valentin Wüstholz, Jörg Hoffmann, and Maria Christakis

side engine, the right-hand side engine, noop. The effect of firing

an engine is stochastic, following a probability distribution over

the yielded force. Touching a leg to the ground yields reward +100,
and touching the body to the ground yields reward −100. There is
no discount factor, and the best-case reward is over 200.

Policy training. We train the agent using PPO [37] imple-

mented in the SB3 library [36]. Our agent is well trained, and

achieves an average reward of 205 points (after 1 million train-

ing episodes).

Metamorphic operations. Relaxed states are generated by de-

creasing the height of the surface, giving the lander more time to

land (see Figure 2b). Conversely, we generate unrelaxed states by

increasing the surface height up to a safe distance.

DIV_THRESH and WALK_LENGTH. We set DIV_THRESH to 0.65 and
WALK_LENGTH to 25.

8.3 BipedalWalker
In the BipedalWalker domain, a bipedal robot moves along a finite-

length terrain that has a rough surface. The robot’s task is to move

forward until the end of the terrain. The action space is continuous,

with actions being defined by a 4-tuple of numbers 𝑥𝑖 ∈ [0.0, 1.0].
Each 𝑥𝑖 specifies the force applied to one of the joints of the robot.

The actions are deterministic; the only stochastic elements in this

domain are the terrain (surface) shape and the initial forces in the

robot’s joints. The best-case achievable reward is +300 collected
when reaching the end of the terrain, plus small positive rewards

that can be collected beforehand. If the robot falls, it receives −100
points, and the game ends immediately. Again, there is no discount

factor.

Policy training. We use the PPO algorithm from SB3 for train-

ing. Our agent achieves an average reward of 302 points (after 1

million training episodes).

Metamorphic operations. As smooth surfaces are easier to

navigate for the walker, relaxed states are generated by making

the terrain smoother (see Figure 2c), whereas unrelaxed states are

generated by making the terrain rougher.

DIV_THRESH and WALK_LENGTH. We set DIV_THRESH to 2.0 and

WALK_LENGTH to 25.

Overall, our case studies explore moving obstacles under simple

action dynamics (Highway), fixed obstacles under complex action

dynamics (LunarLander), and keeping balance with continuous

motor control (BipedalWalker). They, thus, cover a broad range of

applications featuring obstacle avoidance, which is a ubiquitous

problem in neurally controlled systems.

9 EXPERIMENTS
Our primary evaluation concerns bug-finding capability, i.e., the

number of (seed-)bugs correctly identified by different oracles. We,

furthermore, analyze the impact of the POL_PROB and DIV_THRESH
algorithm parameters, and we provide data on runtime to gauge

the practical effort needed. In what follows, we first introduce the

oracles we compare, then focus on these three evaluations in turn.

To account for the randomness in our algorithms and game

environments, we run each experiment 8 times and report statistics

over these runs below. Each run was performed on a Debian 10

machine with 1.5 TB of memory and 96 CPUs (Intel(R) Xeon(R)

Gold 6248R CPU @ 3.00GHz). For each run, we used a time limit of

24 hours.

9.1 Competing Oracles
To provide a comprehensive evaluation, we consider not only our

metamorphic oracles, but eight oracles in total:

MMBug, MMSeedBugBasic, MMSeedBugExt These are the

oracles from Algorithm 1. (MM stands for metamorphic.)

FailureSeedBug This oracle just flags 𝑠𝑖 as a bug if 𝐸
𝑟 .𝜎 [𝜋, 𝑠𝑖]

fails.

This is a trivial baseline that does not check avoidability.

RuleSeedBug This oracle uses the aforementioned “change

nothing” rule (see Section 2), reporting pool state 𝑠𝑖 as a

seed-bug if there is an unrelaxed state 𝑡𝑖 , 𝑅(𝑡𝑖 , 𝑠𝑖), such that

𝐸𝑟 .𝜎 [𝜋, 𝑡𝑖] succeeds and 𝜋 (𝑠𝑖) ≠ 𝜋 (𝑡𝑖). The rationale is that
what works for 𝑡𝑖 also works for 𝑠𝑖 , so the policy should not

change.

As 𝜋 (𝑠𝑖) = 𝜋 (𝑡𝑖) is possible but not necessary, this oraclemay

incorrectly classify 𝑠𝑖 as a seed-bug. Here, we report only

the true positives, measuring the oracle’s ability to identify

true bugs (which as we shall see is lacking).

PerfectBug and PerfectSeedBug These oracles provide ex-

act measuring lines. PerfectSeedBug explores all possible

trajectories from a given state with the given random seed,

and detects a bug only if there exists a winning trajectory but

the policy fails from this state. PerfectBug simply measures

𝑃𝜙 (𝜋, 𝑠) and 𝑃∗
𝜙
(𝑠), and detects a bug if 𝑃𝜙 (𝜋, 𝑠) > 𝑃∗

𝜙
(𝑠).

Computing these oracles is tractable only for Highway, so

we report data only for this case study.

MMSeedBug2Bug This oracle first calls MMSeedBugBasic. If

MMSeedBugBasic flags 𝑠𝑖 as a bug due to unrelaxed state

𝑡𝑖 , then MMSeedBug2Bug flags 𝑠𝑖 as a bug if additionally

𝑃𝜙 (𝜋, 𝑡𝑖) < 𝑃𝜙 (𝜋, 𝑠𝑖).
Such seed-bug filtering speeds up bug-finding as we will see.

Further, this oracle evaluates how many seed-bugs found by

MMSeedBugBasic correspond to bugs.

In MMBug and MMSeedBug2Bug, we evaluate 𝑃𝜙 by running the

policy 30 times. Based on limited experiments, this is reasonable in

our case studies; using statistical methods to compute 𝑃𝜙 up to a

confidence bound is future work.

Prior to considering the empirical data for these oracles, note

the following guaranteed relations between the sets of states (or

state/seed pairs) they identify as bugs:

RuleSeedBug ⊆ MMSeedBugBasic The true positives of the

RuleSeedBug oracle are dominated by those of MMSeedBug-

Basic, because if 𝑅(𝑡𝑖 , 𝑠𝑖) and 𝐸𝑟 .𝜎 [𝜋, 𝑡𝑖] succeeds, then 𝑠𝑖 is
a bug iff 𝐸𝑟 .𝜎 [𝜋, 𝑠𝑖] fails – which is precisely what MMSeed-

BugBasic is checking.

MMSeedBugBasic ⊆ PerfectSeedBug, MMBug ⊆ Perfect-
Bug By Proposition 3.

PerfectSeedBug ⊆ FailureSeedBug FailureSeedBug catches

all seed-bugs but may incorrectly flag non-bugs.

Metamorphic Relations via Relaxations: An Approach to Obtain Oracles for Action-Policy Testing ISSTA ’22, July 18–22, 2022, Virtual, South Korea

MMSeedBug2Bug ⊆ MMSeedBugBasic, MMSeedBug2Bug
⊆ MMBug By construction.

MMSeedBug2Bug = MMSeedBugBasic =MMBug This re-

lation holds on deterministic domains where policy runs are

unique.

The MMSeedBugExt oracle is incomparable to the others as it is

the only one that attempts to find additional (seed-)bugs, beyond

the pool states 𝑠𝑖 .

9.2 Results: Oracle Capability
Figure 3 shows our evaluation of oracle bug-finding capability.

We fix the default version of the fuzzer here (using the parameter

settings as previously specified). For each case study, we plot pool

size on the 𝑥-axis as the testing progresses, and we show howmany

bugs were reported by each oracle on the 𝑦-axis; dark lines denote

mean values and shaded areas standard deviation.

Consider first Figure 3a about Highway, where exact measur-

ing lines by perfect oracles are available. These measuring lines

attest to the strength of our metamorphic oracles in this domain:

MMBug is close to PerfectBug, and MMSeedBugBasic is close to

PerfectSeedBug. The average numbers of (seed-)bugs identified

at the end of testing are 631.6 for MMBug, 650.1 for PerfectBug,

73.5 for MMSeedBugBasic, and 82.0 for PerfectSeedBug. Among

the seed-bug oracles, FailureSeedBug reports many false positives,

RuleSeedBug lags behind MMSeedBugBasic (38.5 at the end), and

MMSeedBugExt finds a large number of additional bugs (∼ 16000).

The gap between the seed-bug and bug oracles is large here.

This is because the former ignore pool states that are solved by the

policy under the one random seed chosen by the fuzzer, whereas

the latter consider multiple seeds and identify many bugs for the

same pool states. Accordingly, while MMSeedBug2Bug is close to

MMSeedBugBasic showing that most seed-bugs we identify are

bugs, MMSeedBug2Bug lags far behind MMBug.

Consider now LunarLander and BipedalWalker in Figure 3b and

3c. MMSeedBugBasic vastly outperforms RuleSeedBug. Failure-

SeedBug is far above that, but at least 50% of these failures are

unavoidable. We calculate this number by implementing a limited-

budget depth-first search, which examines all possible trajectories

from a given state within a 15-minute time budget. We run this

search on the pool states for which the policy fails, and we report

the states for which a crash is unavoidable. There is such a large

proportion of states where a crash is unavoidable because the Lu-

narLander agent can easily get out of control with random actions

and recovering becomes impossible. MMSeedBugExt finds many

additional bugs as before (∼ 17000).

In LunarLander, MMBug is only slightly aboveMMSeedBugBasic

(in difference to Highway); MMSeedBug2Bug and MMSeedBugBa-

sic are so close to each other that the two plots cannot be distin-

guished (99% of the seed-bugs reported by MMSeedBugBasic are

bugs here). In BipedalWalker, the three plots necessarily coincide

as the environment is deterministic. For this reason, we do not plot

these lines.

Overall, the results show thatmetamorphic oracles are highly
useful for identifying bugs in action policies, and they are su-

perior to the rule-based and failure-based alternatives we evaluate.

In the two domains where we are able to check (one with limited

0 200 400 600 800 1000 1200
Pool Size

10−1

100

101

102

103

104

Bu

gs

PerfectBug
MMBug
MMSeedBug2Bug

MMSeedBugExt
FailureSeedBug
PerfectSeedBug
MMSeedBugBasic
RuleSeedBug

(a) Highway

0 200 400 600 800 1000 1200
Pool Size

10−1

100

101

102

103

104

Bu

gs

MMBug
MMSeedBug2Bug

MMSeedBugExt
FailureSeedBug
MMSeedBugBasic
RuleSeedBug

(b) LunarLander

0 200 400 600
Pool Size

10−1

100

101

102

103

Bu

gs

MMSeedBugExt
FailureSeedBug
MMSeedBugBasic
RuleSeedBug

(c) BipedalWalker

Figure 3: Evaluation of oracles: number of (unique) bugs as
a function of pool size during the testing process. MMSeed-
Bug2Bug and MMBug are not included in BipedalWalker as
it is a deterministic environment, so these oracles coincide
with MMSeedBugBasic.

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Hasan Ferit Eniser, Timo P. Gros, Valentin Wüstholz, Jörg Hoffmann, and Maria Christakis

Table 1: Evaluation of fuzzer configurations: number and diversity of bugs at the end of the testing process, using the MMSeed-
BugBasic oracle.

Domain

Setting DIV_THRESH>0
POL_PROB=0.2 POL_PROB=0

Bugs Distance (𝐿2) # Bugs Distance (𝐿2)
Min Max Avg Min Max Avg

Highway 73.5 3.6 59.8 12.1 50.5 3.6 62.6 13.6

LunarLander 34.6 0.7 3.5 1.6 15.3 0.7 3.1 1.4

BipedalWalker 13.3 2.0 6.3 3.8 13.0 2.0 6.3 3.6

Domain

Setting DIV_THRESH=0
POL_PROB=0.2 POL_PROB=0

Bugs Distance (𝐿2) # Bugs Distance (𝐿2)
Min Max Avg Min Max Avg

Highway 116.5 1.1 42.3 10.5 90.7 1.1 37.9 9.7

LunarLander 261.0 0> 2.7 1.0 167.2 0> 2.7 1.0

BipedalWalker 14.5 1.0 4.2 2.7 13.7 1.4 4.2 2.4

Table 2: Average runtime (in seconds). Left: Oracle runtime per state for MMSeedBugBasic, MMBug, and MMSeedBug2Bug.
Right: Fuzzer runtime required to add one more state to the pool.

Domain Oracle Fuzzer

DIV_THRESH>0 DIV_THRESH=0

MMSBB MMB MMSB2B POL_PROB=0.2 POL_PROB=0 POL_PROB=0.2 POL_PROB=0

Highway 0.4 10.1 0.6 73.0 96.9 0.001 0.003

LunarLander 0.6 10.1 1.4 82.4 158.0 0.004 0.004

BipedalWalker 6.1 n/a n/a 119.6 159.0 0.008 0.010

budget), the oracles are close to perfect. Moreover, seed-bug de-
tection is a practical proxy for bug detection in the sense that

most seed-bugs detected by MMSeedBugBasic are bugs. Especially,

MMSeedBugExt is extremely effective in identifying bugs in
diverse states.

9.3 Results: Fuzzer Configurations
For our evaluation of fuzzer configurations – specifically, algorithm

parameters POL_PROB and DIV_THRESH, which are the most inter-

esting as discussed – see Table 1.

First, consider the impact of POL_PROB, controlling whether or
not the policy under test is used to (partially) inform the random

walks in the fuzzer. This is intended to improve the bug-finding

capability in domains where purely random walks incur too many

unavoidable failures. This effect is observed across domains, but

it is especially noticeable in LunarLander, where a non-zero vs. a

zero POL_PROB results in finding significantly more bugs for each

setting of DIV_THRESH. (Note that value 0> in the table was 0.029

for POL_PROB=0.2 and 0.026 for POL_PROB=0 in our experiments.)

A clear added value of finding more bugs is in using them as part

of a targeted re-training process; as the amount of training data is

important, so is the number of bugs.

On the other hand, a non-zero diversity threshold for adding

states to the pool (DIV_THRESH) reduces the number of bugs found

in LunarLander by up to an order of magnitude, with smaller reduc-

tions in Highway and BipedalWalker. This is because some detected

bugs are not added to the pool, and there is a computational over-

head associated with checking for diversity. The desired effect of

increasing bug diversity is achieved though; all minimum, maxi-

mum, and average distance values among bug states are higher for

a non-zero vs. a zero threshold. In general, diversity is important

in gaining confidence that a policy is correct. Moreover, more di-

verse bugs could be more effective for re-training as they may point

out different policy shortcomings. However, the gain in diversity

requires more runtime, as we also show next.

9.4 Results: Fuzzer and Oracle Runtime
Finally, consider the runtime data in Table 2. We evaluate the MM-

SeedBugBasic and MMBug oracles to assess the effort required for

identifying seed-bugs vs. bugs.We also includeMMSeedBug2Bug to

assess the speed-up gained from using seed-bug detection as a filter.

As expected, seed-bug detection is much faster than bug detection,

and seed-bug filtering gets rid of much of the overhead (at the risk

of missing bugs, cf. above). Note that we do not evaluate MMBug

andMMSeedBug2Bug for BipedalWalker as it is deterministic; these

oracles coincide with MMSeedBugBasic.

Regarding fuzzer parameters, with DIV_THRESH>0, finding a new
state for the pool takes 4–5 orders of magnitude more time (on

Metamorphic Relations via Relaxations: An Approach to Obtain Oracles for Action-Policy Testing ISSTA ’22, July 18–22, 2022, Virtual, South Korea

average; at the start of testing, the overhead is smaller). Given that

its only advantage is bug diversity (cf. Table 1), whether or not that

switch should be activated depends on the application.

9.5 Threats to Validity
We identify the following threats to the validity of our experiments.

Games. The detected policy bugs, of course, depend on our

selection of games. However, apart from the Highway benchmark

that we developed, we show the effectiveness and generality of our

approach by additionally applying it to two popular, off-the-shelf

Gym environments. Further, we consider both deterministic and

stochastic games.

Agents. The detected bugs also depend on the quality of the

agents we train. However, all our agents are well trained as we

describe in Section 8.

Metamorphic operations. The effectiveness of our approach
is affected by the metamorphic operations that we define (see Sec-

tion 8). However, as described earlier, relaxing obstacles is easy,

hardly requiring any domain knowledge. When adding obstacles,

we do so carefully to prevent causing unavoidable crashes, e.g., by

adding a car at a safe distance from the agent in Highway, or by

increasing the surface height up to a safe distance in LunarLander.

10 CONCLUSION
Testing action policies for avoidable failures requires oracles that

can effectively identify sub-optimal failure-avoiding abilities. We

have shown that such oracles can be obtained from relaxations, by

adapting ideas frommetamorphic testing. Our experiments confirm

the potential of this approach.

This work opens up an entire universe of exciting research on

relaxation-based metamorphic oracles. Possibilities include the au-

tomated design of state relaxations and thus metamorphic oracles;

intelligent methods to explore environment behaviors in a search

for seed-bugs; fault localization trying to identify specific combina-

tions of policy decisions leading to failures; as well as closing the

loop with re-training by feeding bug states back into reinforcement

learning, until testing yields sufficient confidence in the policy.

ACKNOWLEDGMENTS
We are grateful to the reviewers for their constructive feedback.

This work was supported by DFG grant 389792660 as part of TRR

248 (see https://perspicuous-computing.science).

REFERENCES
[1] [n. d.]. LibFuzzer—A Library for Coverage-Guided Fuzz Testing. https://llvm.

org/docs/LibFuzzer.html.

[2] [n. d.]. Technical “Whitepaper” for AFL. http://lcamtuf.coredump.cx/afl/

technical_details.txt.

[3] Takumi Akazaki, Shuang Liu, Yoriyuki Yamagata, Yihai Duan, and Jianye Hao.

2018. Falsification of Cyber-Physical Systems Using Deep Reinforcement Learn-

ing. In FM (LNCS, Vol. 10951). Springer, 456–465.
[4] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott

Niekum, and Ufuk Topcu. 2018. Safe Reinforcement Learning via Shielding. In

AAAI. AAAI, 2669–2678.
[5] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. 2018. Verifiable Rein-

forcement Learning via Policy Extraction. In NeurIPS. 2499–2509.
[6] Blai Bonet and Hector Geffner. 2001. Planning as Heuristic Search. AIJ 129 (2001),

5–33. Issue 1–2.

[7] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-

man, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. CoRR abs/1606.01540

(2016).

[8] Tsong Yueh Chen, S. C. Cheung, and Siu-Ming Yiu. 1998. Metamorphic Testing: A
New Approach for Generating Next Test Cases. Technical Report HKUST–CS98–01.
HKUST.

[9] Anthony Corso, Robert J. Moss, Mark Koren, Ritchie Lee, and Mykel J. Kochen-

derfer. 2021. A Survey of Algorithms for Black-Box Safety Validation. JAIR 72

(2021), 377–428.

[10] Yao Deng, Xi Zheng, Tianyi Zhang, Guannan Lou, Huai Liu, and Miryung Kim.

2020. RMT: Rule-Based Metamorphic Testing for Autonomous Driving Models.

CoRR abs/2012.10672 (2020).

[11] Carmel Domshlak, Jörg Hoffmann, and Michael Katz. 2015. Red-Black Planning:

A New Systematic Approach to Partial Delete Relaxation. AIJ 221 (2015), 73–114.
[12] Tommaso Dreossi, Thao Dang, Alexandre Donzé, James Kapinski, Xiaoqing Jin,

and Jyotirmoy V. Deshmukh. 2015. Efficient Guiding Strategies for Testing of

Temporal Properties of Hybrid Systems. In NFM (LNCS, Vol. 9058). Springer,
127–142.

[13] Stefan Edelkamp. 2001. Planning with Pattern Databases. In ECP. AAAI, 13–24.
[14] Gidon Ernst, Sean Sedwards, Zhenya Zhang, and Ichiro Hasuo. 2019. Fast Falsifi-

cation of Hybrid Systems Using Probabilistically Adaptive Input. In QEST (LNCS,
Vol. 11785). Springer, 165–181.

[15] Javier García and Fernando Fernández. 2015. A Comprehensive Survey on Safe

Reinforcement Learning. JMLR 16 (2015), 1437–1480.

[16] Sankalp Garg, Aniket Bajpai, and Mausam. 2019. Size Independent Neural Trans-

fer for RDDL Planning. In ICAPS. AAAI, 631–636.
[17] Raffaella Gentilini, Carla Piazza, and Alberto Policriti. 2003. From Bisimulation

to Simulation: Coarsest Partition Problems. J. Autom. Reason. 31 (2003), 73–103.
Issue 1.

[18] Simos Gerasimou, Hasan Ferit Eniser, Alper Sen, and Alper Çakan. 2020.

Importance-Driven Deep Learning System Testing. In ICSE. ACM, 322–323.

[19] Edward Groshev, Maxwell Goldstein, Aviv Tamar, Siddharth Srivastava, and

Pieter Abbeel. 2018. Learning Generalized Reactive Policies Using Deep Neural

Networks. In ICAPS. AAAI, 408–416.
[20] Pinjia He, Clara Meister, and Zhendong Su. 2020. Structure-Invariant Testing for

Machine Translation. In ICSE. ACM, 961–973.

[21] Malte Helmert, Patrik Haslum, Jörg Hoffmann, and Raz Nissim. 2014. Merge-

and-Shrink Abstraction: A Method for Generating Lower Bounds in Factored

State Spaces. JACM 61 (2014), 16:1–16:63. Issue 3.

[22] JonathanHo and Stefano Ermon. 2016. Generative Adversarial Imitation Learning.

In NeurIPS. 4565–4573.
[23] Nathan Hunt, Nathan Fulton, Sara Magliacane, Trong Nghia Hoang, Subhro Das,

and Armando Solar-Lezama. 2021. Verifiably Safe Exploration for End-To-End

Reinforcement Learning. In HSCC. ACM, 14:1–14:11.

[24] Murugeswari Issakkimuthu, Alan Fern, and Prasad Tadepalli. 2018. Training

Deep Reactive Policies for Probabilistic Planning Problems. In ICAPS. AAAI,
422–430.

[25] Rushang Karia and Siddharth Srivastava. 2021. Learning Generalized Relational

Heuristic Networks for Model-Agnostic Planning. In AAAI. AAAI, 8064–8073.
[26] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding Deep Learning System

Testing Using Surprise Adequacy. In ICSE. IEEE Computer Society/ACM, 1039–

1049.

[27] Mark Koren, Saud Alsaif, Ritchie Lee, and Mykel J. Kochenderfer. 2018. Adaptive

Stress Testing for Autonomous Vehicles. In IV. IEEE Computer Society, 1–7.

[28] Ritchie Lee, Ole J. Mengshoel, Anshu Saksena, Ryan W. Gardner, Daniel Genin,

Joshua Silbermann, Michael P. Owen, and Mykel J. Kochenderfer. 2020. Adaptive

Stress Testing: Finding Likely Failure Events with Reinforcement Learning. JAIR
69 (2020), 1165–1201.

[29] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang

Chen, Ting Su, Li Li, Yang Liu, Jianjun Zhao, and YadongWang. 2018. DeepGauge:

Multi-Granularity Testing Criteria for Deep Learning Systems. In ASE. ACM,

120–131.

[30] Barton P. Miller, Lars Fredriksen, and Bryan So. 1990. An Empirical Study of the

Reliability of UNIX Utilities. CACM 33 (1990), 32–44. Issue 12.

[31] Robin Milner. 1971. An Algebraic Definition of Simulation Between Programs.

In IJCAI. 481–489.
[32] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,

Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg

Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen

King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.

Human-Level Control Through Deep Reinforcement Learning. Nature 518 (2015),
529–533. Issue 7540.

[33] Augustus Odena, Catherine Olsson, David Andersen, and Ian J. Goodfellow. 2019.

TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing. In

ICML (PMLR, Vol. 97). PMLR, 4901–4911.

[34] Qi Pang, Yuanyuan Yuan, and Shuai Wang. 2021. MDPFuzzer: Finding Crash-

Triggering State Sequences in Models Solving the Markov Decision Process. CoRR
abs/2112.02807 (2021).

https://perspicuous-computing.science
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Hasan Ferit Eniser, Timo P. Gros, Valentin Wüstholz, Jörg Hoffmann, and Maria Christakis

[35] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Auto-

mated Whitebox Testing of Deep Learning Systems. In SOSP. ACM, 1–18.

[36] Antonin Raffin, AshleyHill, Maximilian Ernestus, AdamGleave, Anssi Kanervisto,

and Noah Dormann. 2019. Stable Baselines3. https://github.com/DLR-RM/stable-

baselines3.

[37] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).

[38] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George

van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Pan-

neershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,

Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray

Kavukcuoglu, Thore Graepel, and Demis Hassabis. 2016. Mastering the Game

of Go with Deep Neural Networks and Tree Search. Nature 529 (2016), 484–489.
Issue 7587.

[39] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew

Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Grae-

pel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. 2018. A General

Reinforcement Learning Algorithm that Masters Chess, Shogi, and Go Through

Self-Play. Science 362 (2018), 1140–1144. Issue 6419.

[40] Marcel Steinmetz, Timo P. Gros, Philippe Heim, Daniel Höller, and Jörg Hoffmann.

2021. Debugging a Policy: A Framework for Automatic Action Policy Testing. In

PRL@ICAPS.
[41] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and

Daniel Kroening. 2018. Concolic Testing for Deep Neural Networks. In ASE.
ACM, 109–119.

[42] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Automated

Testing of Deep-Neural-Network-Driven Autonomous Cars. In ICSE. ACM, 303–

314.

[43] Sam Toyer, Sylvie Thiébaux, Felipe W. Trevizan, and Lexing Xie. 2020. ASNets:

Deep Learning for Generalised Planning. JAIR 68 (2020), 1–68.

[44] Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang, and Peixin Zhang. 2019.

Adversarial Sample Detection for Deep Neural Network ThroughModel Mutation

Testing. In ICSE. IEEE Computer Society/ACM, 1245–1256.

[45] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khur-

shid. 2018. DeepRoad: GAN-Based Metamorphic Testing and Input Validation

Framework for Autonomous Driving Systems. In ASE. ACM, 132–142.

[46] Zhi Quan Zhou and Liqun Sun. 2019. Metamorphic Testing of Driverless Cars.

CACM 62 (2019), 61–67. Issue 3.

https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3

	Abstract
	1 Introduction
	2 Related Work
	3 Context and Notations
	4 -fuzz Policy Fuzzing Framework
	5 Policy Bugs
	6 Metamorphic Oracles
	6.1 Metamorphic Oracles via Relaxation
	6.2 Metamorphic Oracles in our Case Studies
	6.3 Discussion: How To Obtain Relaxations

	7 Fuzzing Algorithm
	8 Case Studies
	8.1 Highway
	8.2 LunarLander
	8.3 BipedalWalker

	9 Experiments
	9.1 Competing Oracles
	9.2 Results: Oracle Capability
	9.3 Results: Fuzzer Configurations
	9.4 Results: Fuzzer and Oracle Runtime
	9.5 Threats to Validity

	10 Conclusion
	Acknowledgments
	References

