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ABSTRACT
In the last decades, numerous program analyzers have been de-
veloped both in academia and industry. Despite their abundance
however, there is currently no systematic way of comparing the
effectiveness of different analyzers on arbitrary code. In this paper,
we present the first automated technique for differentially testing
soundness and precision of program analyzers. We used our tech-
nique to compare six mature, state-of-the art analyzers on tens of
thousands of automatically generated benchmarks. Our technique
detected soundness and precision issues in most analyzers, and we
evaluated the implications of these issues to both designers and
users of program analyzers.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation.
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1 INTRODUCTION
Despite the abundance of program analyzers that have been devel-
oped both in academia and industry, there is currently no systematic
way of comparing their effectiveness on arbitrary code. To compare
the soundness and precision of a set of analyzers, one could try
them on a number of programs to get a feel for their false positive or
false negative rates. However, just classifying the generated warn-
ings as false or true positives would require considerable human
effort, let alone determining whether any bugs are missed.

Alternatively, one could rely on the outcome of software veri-
fication competitions such as SV-COMP [7], which compares pro-
gram analyzers based on an established collection of verification
tasks. Although verification competitions are extremely valuable,
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the verification tasks are rather stable. As a consequence, program
analyzers can be designed to perform well in such competitions by
specifically tailoring their techniques to the given benchmarks.

Our approach. In this paper, we present the first automated
technique for differentially testing program analyzers on arbitrary
code. Given a set of seed programs, our approach automatically gen-
erates program-analysis benchmarks and compares the soundness
and precision of the analyzers on these benchmarks. As a result,
the effectiveness of the different program analyzers is evaluated
in a systematic and automated way, the benchmarks are less pre-
dictable than the seed programs, and the explicit checks can be
parameterized to express several types of properties, for instance,
numerical, non-nullness, or points-to properties.

However, as for existing differential-testing techniques, it is
challenging to automatically derive the ground truth, for example,
whichwarnings are indeed true positives or which errors aremissed.
We address this challenge by leveraging Engler et al.’s “bugs-as-
deviant-behavior” strategy [27]. Specifically, when most program
analyzers agree that a certain property does not hold, our approach
detects a potential soundness issue in the deviant analyzers, which
find that the property does hold. Conversely, we detect a potential
precision issue when a few analyzers claim that a property does
not hold, while the majority of analyzers verify the property.

The work most closely related to ours is by Kapus and Cadar,
who use random program generation and differential testing to find
bugs in symbolic execution engines [38]. In contrast to this work,
our approach focuses on detecting soundness and precision issues
in any program analyzer, potentially including a test generator
based on symbolic execution. Moreover, our technique automati-
cally generates program-analysis benchmarks from a given set of
seed programs, possibly containing code that is difficult to handle
by program analysis. In general, it is very challenging to randomly
generate programs from scratch such that they reveal soundness
and precision issues in mature analyzers, which is why our tech-
nique leverages the seed programs.

Overall, our approach is a first step toward guiding users in mak-
ing informed choices when selecting a program analyzer. However,
this is not to say that the best analyzer is the most sound; users have
varying needs depending on how critical the correctness of their
code is and where in the development cycle they are (e.g., before a
code review or product release) [12]. We also expect our technique
to assist designers of analyzers in detecting soundness and precision
issues of their implementation, and to help enrich the collection of
tasks used in verification competitions by automatically generating
challenging, yet less predictable, benchmarks.

Contributions.We make the following contributions:

– We present the first automated technique for differentially testing
soundness and precision of analyzers on arbitrary code.
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Figure 1: Overview of the workflow and tool architecture.

– We implement our technique in a tool architecture that com-
pares analyzers on C programs and may be instantiated with any
program analyzer for C.

– We report our experience and lessons learned while using this
technique to compare six state-of-the-art analyzers on about
26,000 programs. We found soundness and precision issues in
four (out of six) analyzers, and we evaluated their significance to
both program-analysis designers and users.

Terminology. Since terminology varies across different analy-
sis techniques, we introduce the following terms. Sound program
analysis over-approximates the set of possible executions in a given
program in order to prove the absence of errors. Due to its over-
approximation, sound analysis may generate false positives, that
is, spurious warnings about executions that are not erroneous or
even possible in the program. In contrast, a true positive is a warn-
ing about an actual error. An imprecise program analysis abstracts
certain program executions such that it considers more executions
than those feasible in the program. Although an imprecise analysis
might generate false positives, it is not necessarily sound.

2 OVERVIEW
In this section, we illustrate the workflow and tool architecture of
our differential-testing technique for analyzers, shown in Fig. 1.

Workflow.Our technique, which is implemented in a tool called
α-Diff, takes as input one or more correct seed programs that do not
contain any (explicit or implicit) assertions. Because these programs
are both correct and assertion-free, program analyzers (even if
sound and imprecise) do not generate any warnings for them.

Next, α-Diff parses a seed program, and based on one of its
search strategies (Sect. 3.1), a program location is selected. At this
location, α-Diff synthesizes and introduces a check, in the form of
an assertion, expressing a property of interest (e.g., a numerical
property) and involving variables that are in scope at the location
(Sect. 3.1). We call the resulting program a variant of the seed.

On this program variant, containing a single assertion, α-Diff
runs a set of program analyzers and records their results, that is, the
presence or absence of any generated warnings for the assertion.

Subsequently, α-Diff selects a new program location in the same
seed program and repeats the process until a given budget (i.e.,
number of synthesized checks for a particular seed) is depleted. The
tool then continues to parse another seed program, if any.

When all seed programs have been instrumented and analyzed
until the budget, α-Diff compares the recorded results and reports
any soundness and precision issues in the analyzers (Sect. 3.2).

1 int main() {

2 int i = 0;

3 while (i < 100000) {

4 assert i != 13; // soundness issue

5 i = i + 1;

6 }

7 assert i != 10; // precision issue

8 return i;

9 }

Figure 2: Soundness and precision issues in SMACK.

Note that it is very difficult to synthesize programs such that they
reveal soundness and precision issues in analyzers. For this reason,
our technique takes potentially complex programs as seeds and
generates variants simply by synthesizing checks. This approach
has the additional benefit that any given difference in the analyzer
results can only be due to a single check in a variant.

Example. Fig. 2 shows a simplified version of an SV-COMP
benchmark that we used in our evaluation as a seed program to
test six analyzers. (Lines 4 and 7 should be ignored for now.) Note
that this program is correct and does not contain any assertions.

When passing this seed program to α-Diff, the ‘Check Synthe-
sizer’ (from Fig. 1) introduces the assertion on line 4. Our tool then
runs all analyzers on the resulting program variant, whose asser-
tion can obviously fail. All analyzers detect the assertion violation
except for CBMC [14], a bounded model checker for C and C++
programs, and SMACK [54], a software verifier that translates the
LLVM intermediate representation into the Boogie intermediate
verification language [4]. CBMC typically unrolls loops as many
times as necessary such that all bugs are found, but we imposed
a time limit on all analyzers, which proved to be insufficient for
CBMC to unroll the loop enough times and detect the assertion
violation. (Note, however, that CBMC does find the bug with a
higher time limit.) Still, CBMC soundly returns ‘unknown’, that is,
no bugs were found but, due to reaching the time limit, the program
has not been verified. On the other hand, SMACK claims to have
verified the assertion on line 4, which indicates a soundness issue.

We reported this issue1 to the designers of SMACK, who told us
that the assertion violation is missed due to a size-reduction heuris-
tic, which searches for large constants in SV-COMP benchmarks,
such as 100000 in Fig. 2, and replaces them with smaller numbers,
in our case with 10 , to reduce the benchmark size. This heuristic is
unsound and, as the SMACK designers confirmed, it is specifically
tailored to the competition benchmarks.

In addition to being a source of unsoundness, this heuristic can
also cause imprecision. For example, consider the program variant
of Fig. 2 with the assertion on line 7 (and without the assertion on
line 4). This assertion is introduced by α-Diff within the budget
that is assigned to the seed program from SV-COMP, and it can
never fail. All analyzers but SMACK are able to verify this program.
However, because of the size-reduction heuristic, SMACK knows
that variable i is equal to 10 right after the loop, and therefore, the
verifier reports an assertion violation, indicating a precision issue.

3 DIFFERENTIAL TESTING OF ANALYZERS
We now describe the main components of our workflow in detail.

1https://github.com/smackers/smack/issues/324
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Algorithm 1 Check synthesis
Input: seed program P

1 // Pick candidate expression e at program location l.
2 e, l← GetCandidateExpression(P)
3 // Pick constant k.
4 k← GenerateConstant(P, e)
5 // Create check.
6 s← assert e != k
7 // Instrument program P by inserting statement s.
8 P′← InsertAtLocation(P, l, s)

Output: program variant P ′

3.1 Check Synthesis
The check-synthesis component consists of two aspects: (1) the
instrumentation, which creates a check and introduces it at a certain
location in the seed program to generate a variant, and (2) the
search strategies, which explore the space of possible seed-program
variants that may be generated. We discuss these aspects next.

Instrumentation. The checks introduced by α-Diff in a seed
program target numerical properties. In particular, they check
whether an expression e can ever have value k at program location
l. If so, the check can fail, and the tested analyzers should detect
this violation in order to be sound. If the expression can never have
this value at that location, the check cannot fail, and the analyzers
should not detect any violation in order to be precise. Our imple-
mentation targets such safety properties since they are found in
almost every program and can, thus, be checked by most analyz-
ers. For instance, when checking for division by zero, analyzers
need to ensure that the denominator can never have the value zero;
similarly, for null-pointer exceptions, etc.

Alg. 1 describes how α-Diff generates a variant P ′ from a seed
program P . First, the algorithm selects a candidate expression e
at program location l in P . In our context, a candidate expression
is a pure expression of integral type that reads from at least one
variable, e.g., c + 3 or a[i], where c is a variable of type char
and a is an array of integers. (Note that the choice of expression e is
made according to a search strategy.) Next, the algorithm generates
a constant k, which is used, together with expression e, to create
an assertion of the form assert e != k. To generate variant P ′,
this assertion is inserted at location l in P . As an example, consider
the assertion on line 4 of Fig. 2, which is introduced at the location
where expression i (right-hand side of the assignment on line 5)
is found in seed program P . Similarly, the assertion on line 7 is
inserted at the location of the return statement in P .

The algorithm randomly samples constants k (see Sect. 4 for
more details). As a result, the generated assertions may or may not
hold. The latter is useful for detecting soundness issues in the tested
analyzers when an assertion violation is not detected. The former
helps to identify precision issues when the assertion is not proved.
The algorithm also selects a candidate expression e at a certain
location. This ensures that an assertion may be added throughout
the seed program to thoroughly test the analyzers—we discuss
search strategies for candidate expressions below.

Note that, although α-Diff generates program variants with nu-
merical checks, the ‘Check Synthesizer’ of Fig. 1 is configurable and
may be extended to also synthesize other types of properties. In

particular, the synthesizer could be extended for any property that
may be expressed as an assertion and uses variables in scope, like
the length of an existing buffer (e.g., for buffer-overflow checking)
or pointers (e.g., for non-nullness checking). Still, as we discuss in
Sect. 5.3, synthesizing numerical checks was sufficient for detecting
soundness and precision issues in most of the analyzers we tested.

Batch checks. To reduce the number of times the analyzers are
invoked, α-Diff can also synthesize assertions with multiple con-
juncts, which we call ‘batch checks’. For example, a variant of Fig. 2
could check whether i is ever equal to 10 or 11 on line 7 with
the assertion assert i != 10 && i != 11. Recall that, at
this location, SMACK knows that i has value 10 and would, there-
fore, detect a violation only due to the first conjunct of the above
assertion. For such cases, α-Diff uses divide-and-conquer to elim-
inate conjuncts that do not cause any disagreement between the
analyzers. We evaluate the effectiveness of our technique when
synthesizing assertions with batch checks in Sect. 5.3.

Search strategies. In addition to generating a value k, Alg. 1
also explores the search space of possible candidate expressions e.
Our technique navigates this space using a number of static and
dynamic search strategies, which we evaluate in Sect. 5.3.

Static strategies. Static strategies traverse the abstract syntax tree
(AST) of the seed program to collect all the candidate expressions.
These strategies then compute a weightwe for each candidate ex-
pression e (based on a weight function), sum all weights to compute
the totalwt , and assign to each expression e the probabilitywe/wt
of being selected by GetCandidateExpression. Overall, α-Diff
supports three static strategies that differ in their weight functions:
– The Uniform-Random strategy selects candidate expressions uni-
formly. That is, all possible locations have a weight of 1.

– The Breadth-Biased strategy assigns to each candidate expression
at location l a weight of 1/depth(l), where depth(l) is the depth
of location l in the AST. That is, larger weights are assigned to
locations higher in the AST.

– The Depth-Biased strategy assigns to each candidate expression
at location l a weight of depth(l). That is, larger weights are
assigned to locations lower in the AST.
Dynamic strategies. The dynamic strategies do not assign fixed

weights to candidate expressions. Instead, these strategies select an
initial expression and then traverse the AST in different directions
to select another. Our tool supports the following two dynamic
strategies that differ in how they traverse the AST:
– The Random-Walk strategy selects an initial candidate expression
at the first possible location in the main function of the seed
program. To select another expression, this strategy moves in a
random direction in the AST, e.g., to the subsequent statement,
the previous compound statement, or into a function call.

– The Guided-Walk strategy is a variation of Random-Walk. In
comparison, this strategy favors moves to locations in the AST
that are likely to increase differences in the running times of the
analyzers, e.g., by moving deeper in a compound statement.

3.2 Detection of Unsoundness and Imprecision
A common challenge for differential-testing techniques is detecting
issues with a low false-positive rate, instead of reporting all found
differences. In our context, this requires determining whether the



ISSTA ’19, July 15–19, 2019, Beijing, China Christian Klinger, Maria Christakis, and Valentin Wüstholz

analysis results are indeed sound or precise. To address this chal-
lenge, α-Diff uses two mechanisms for detecting soundness and
precision issues in the tested analyzers, namely, the deviance and
unsoundness detection mechanisms.

Deviance detection. Given a program variant (with a single
assertion), analyzers return one of the following verdicts: safe (i.e.,
the assertion cannot fail), unsafe (i.e., the assertion can fail), or
unknown (i.e., it is unknown whether the assertion can fail, likely
because the analysis times out).

The deviance-detection mechanism is inspired by Engler et al.’s
“bugs as deviant behavior” [27]. Specifically, given a program vari-
ant, when the majority of analyzers return unsafe, α-Diff detects a
potential soundness issue in the deviant analyzers that return safe.
Conversely, α-Diff detects a potential precision issue when a few
program analyzers return unsafe, while the majority of analyzers
return safe.

We call an analyzer δ -unsound with respect to a program variant
when it returns safe and δ other analyzers return unsafe. Analo-
gously, an analyzer is δ -imprecise with respect to a variant when it
returns unsafe and δ other analyzers return safe. For each tested
analyzer, α-Diff ranks all detected soundness (resp. precision) issues
in order of decreasing severity, where severity is proportional to
δ , that is, to the number of disagreeing analyzers. For instance, for
the program variant of Fig. 2 containing the assertion on line 7, we
say that SMACK is 5-imprecise since all other analyzers disagree.

We make the following observations about the effectiveness of
this mechanism. First, there need to be several program analyzers
under test. For instance, if there are only two analyzers, δ may be at
most one, which does not allow to effectively rank disagreements.
Second, issues are missed when they affect all tested analyzers (e.g.,
due to common sources of unsoundness [13]). Third, the detected
issues are more likely to be true positives when the value of δ is
high relative to the total number of analyzers.

Regarding the last observation, note that a high δ does not neces-
sarily mean that an issue has been found. For instance, when testing
six analyzers on a safe program variant, five might be unable to
prove the assertion (i.e., they return unsafe). If the sixth analyzer
verifies the assertion, this mechanism would consider it 5-unsound
although it is sound. In our experiments however, we did not find
any such false positives for a δ greater than or equal to four.

Unsoundness detection.Certain analyzers under-approximate
the set of possible executions in a program. Consequently, when
such analyzers detect an error, this is inevitably a true positive
(modulo bugs in the analysis itself). For instance, we consider CBMC
to be an under-approximating program analyzer because it typically
analyzes the program until a loop-unrolling bound is reached and
uses bit-precise reasoning (i.e., no over-approximation).

When such under-approximating analyzers find that a program
variant is unsafe, then the assertion in the variant can definitely
fail. Therefore, any other analyzer that returns safe for the same
variant is unsound, and we call itmust-unsound. On the other hand,
when an under-approximating analyzer returns safe or unknown,
it is possible that it has missed an assertion violation in the variant.
We, thus, do not use the results of under-approximating analyzers
to draw any conclusions about imprecision in other analyzers.

This mechanism is particularly useful when the number of tested
analyzers is small, unlike the deviance-detection mechanism. In

particular, a single under-approximating analyzermay detect sound-
ness issues in a single over-approximating analyzer.

4 IMPLEMENTATION
In this section, we present the details of our implementation2.

Check synthesis. Recall from Alg. 1 that the check-synthesis
component of α-Diff generates a constant k for each inserted asser-
tion. Constants k are sampled randomly but with a few tweaks.

First, while parsing a seed program, α-Diff populates a pool of
constants with any constant c encountered in the program, c + 1,
c − 1, and boundary values (such as MIN_INT , 0, and MAX_INT ).
The constants in the pool are then used to complement the ran-
domly sampled constants. Second, our implementation does not
sample constants uniformly to avoid frequently generating very
large values. Instead, α-Diff uniformly selects a bit-width for a
constant and then randomly generates a sequence of bits with
this width. Third, for each check to be synthesized, we use a type
checker to determine the type of the candidate expression and, thus,
the bit-width of the corresponding constant that will be generated
(e.g., 1 bit for expressions of type bool and 8 bits for char).

Result caching. After invoking the program analyzers, our im-
plementation persists the results of each analysis run in a database.
The database is extended with caching capabilities allowing α-Diff
to avoid re-running the analyzers on program variants that have
been previously generated.

5 EXPERIMENTAL EVALUATION
To evaluate the effectiveness of our approach, we apply α-Diff to
six state-of-the-art program analyzers. In this section, we present
our experimental setup (Sect. 5.1), give an overview of the tested
analyzers (Sect. 5.2), and discuss several research questions and
lessons learned (Sect. 5.3).

5.1 Setup
We selected seed programs (written in C) from the SV-COMP repos-
itory of verification benchmarks [7]. We excluded all programs that
contain “float”, “driver”, or “eca-rers2012” in their path. The first
category of excluded programs cannot be handled by all program
analyzers we tested (which we aimed to treat equally), while the
other two categories mainly contain very large benchmarks that
caused most analyzers to reach the time limit we set for our exper-
iments. We also excluded any other benchmark that crashed our
type checker, for instance, some of the programs that are automat-
ically generated by PSYCO [30]. This left us with a total of 1,393
seed programs.

We chose these benchmarks as seed programs because five out
of the six program analyzers we tested have participated in at least
one SV-COMP over the years. We were, therefore, confident that the
analyzers would be able to handle most of the selected programs.
Moreover, SV-COMP benchmarks typically do not exhibit arith-
metic overflows to avoid penalizing analyzers that are intentionally
unsound with respect to overflow [13, 47].

In general, all SV-COMP benchmarks are annotated with asser-
tions (no other crashes should be possible), and user inputs are
made explicit. To use these benchmarks as seed programs, α-Diff

2https://github.com/Practical-Formal-Methods/adiff
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had to preprocess them. First, we removed all existing assertions
such that the seed programs are correct and the program analyzers
do not generate any warnings for them. Second, we ran the GCC
preprocessor to eliminate any macro usages and, thus, avoid any
parsing issues in the analyzers.

Unless stated explicitly, we used the following default configu-
ration of α-Diff: a time limit of 30s, 2 CPU cores, and up to 8GB
of memory per analysis run, a budget of either 100 or 20% of the
number of candidate expressions (whichever is smaller) per seed
program, the Uniform-Random search strategy, and a batch-check
size of 4. Recall from Sect. 3.1 that α-Diff can synthesize assertions
with multiple conjuncts. These are called batch checks, and we refer
to the number of conjuncts as the ‘batch-check size’. We ran our ex-
periments on a dual hexacore Intel® Xeon® X5650 CPU@ 2.67GHz
machine with 48 GiB of memory, running Debian Stretch.

5.2 Program Analyzers
We selected the analyzers under test such that they cover a wide
range of different analysis techniques. In addition, we only chose
mature tools that are under active development. We give a short
description of each analyzer below. Note that, unless otherwise
stated, we used their default configuration.

CBMC. CBMC [14] is a bit-precise bounded model checker that
unrolls loops and expresses verification conditions as SMT queries
over bit-vectors. We used version 5.3 of the tool.

CPAchecker. CPAchecker [8] is a software model checker that
incorporates different program-analysis techniques, such as predi-
cate abstraction [3, 31], lazy abstraction [36], and k-induction [25].
We used the development version 51.7-svn28636 of the tool, which
incorporates fixes for two soundness issues that α-Diff detected.
Note that CPAchecker won the first place in SV-COMP’18 and ’19.

Crab. Crab [28, 29] is an abstract interpreter that supports sev-
eral abstract domains [17, 18]. Its default configuration uses the
Zones domain [51], and we enabled inter-procedural analysis. The
tool was built from commit 5dd7a00b5b.

SeaHorn. SeaHorn [32] is a software model checker that ex-
presses verification conditions as Horn-clauses and uses existing
solvers to discharge them. Its default configuration uses Spacer [39,
40], which is a fork of Z3 [22] with a variant of the IC3/PDR [10]
model-checking algorithm for solving verification conditions. The
tool was built from commit 59c4a917a595.

SMACK. SMACK [54] is software model checker that translates
C programs to Boogie [4], which can be checked by a number
of different verification back-ends. We used version 1.9 with the
default configuration, which runs the Corral verifier [41]. We also
enabled the svcomp extension and set the loop-unrolling bound to
1,000. Note that SMACK won the second place in SV-COMP’17.

Ultimate Automizer. Ultimate Automizer (or UAutomizer) is a
software model checker that uses an automata-based verification
approach [23, 34, 35]. We used version 0.1.23. UAutomizer won
the second and third place in SV-COMP’18 and ’19, respectively.

For all program analyzers that support this, we set the machine
architecture to 32-bit. We also provided a default LTL-specification
file to any analyzer that requires an explicit reachability property
for checking assertions.

5.3 Results
We break our experimental results down into five categories, each
investigating a different research question.

RQ1: Does α -Diff detect soundness and precision issues?
Given as input the 1,393 seed programs, α-Diff generated 25,960
program variants. Fig. 3 shows the number of potential soundness
issues that α-Diff detected in the tested program analyzers when
running them on the generated variants. Each soundness issue
corresponds to a program variant that revealed an analyzer to be
must- or δ -unsound. As shown in the figure, our technique detected
a significant number of potential issues in four program analyzers.

We manually inspected all detected issues from Fig. 3 and re-
ported unique, undocumented sources of unsoundness to the de-
signers of Crab, SeaHorn, and SMACK. We discuss the reaction of
all designers in RQ2. Note that α-Diff had previously found two
soundness issues in CPAchecker, which were reported to the tool
designers early on and were fixed3,4. We used the patched version
of CPAchecker for our experiments.

As is expected, some of the issues in Fig. 3 might expose the same
source of unsoundness in an analyzer. For example, assume that
α-Diff generates several variants (of one or more seed programs)
that use bitwise arithmetic in their assertions. For each of these
variants, our tool could potentially report a soundness issue in any
analyzer that does not support bit-precise reasoning. Note, however,
that our variant generation does not take as input known sources
of unsoundness or imprecision; this is a benefit of our technique.
Of course, users may configure the check synthesis to take them
into account, but we did not do that for our experiments.

As shown in the figure, CPAchecker is found to be 3-unsound for
one program variant. This issue is actually a source of imprecision
in three other analyzers, namely, in Crab, SeaHorn, and SMACK,
and is related to bit-precise reasoning. In general, we observed
that the false-positive rate of our technique depends on two main
factors. First, if some of the tested program analyzers are imprecise
for a given variant, α-Diff detects soundness issues in the remaining
analyzers, which are, however, sound. Second, any issues that are
reported for δ -unsound analyzers, where δ is small, are likely false
positives. For example, when a program analyzer is 1-unsound,
there exists only one disagreeing analyzer.

When inspecting the results of Fig. 3, we did not find any false
positives when δ ≥ 4 or for must-unsound analyzers. For δ < 4,
we found four unique false positives due to imprecision in other
analyzers. It, therefore, becomes clear that the value of δ effectively
controls the false-positive rate of our technique.

Fig. 4 shows the number of precision issues that α-Diff found
for the same program variants. Although the number of issues is
significant, the majority of these do not correspond to bugs in the
analyzers. Instead, most of the precision issues are either intended
by the analysis designers (for instance, imprecise reasoning about
numeric types) or inherent to the analysis (for example, imprecision
in non-relational abstract domains, such as Intervals).

Overall, α-Diff found many more precision issues in Crab in com-
parison to the other analyzers. These issues, however, are intended
since Crab favors performance over precision, similarly to several

3https://groups.google.com/d/msg/cpachecker-users/3JCOeNuoleA/fpr8ElaaBgAJ
4https://groups.google.com/d/msg/cpachecker-users/3JCOeNuoleA/YDT7LokZBwAJ

https://groups.google.com/d/msg/cpachecker-users/3JCOeNuoleA/fpr8ElaaBgAJ
https://groups.google.com/d/msg/cpachecker-users/3JCOeNuoleA/YDT7LokZBwAJ
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Figure 3: Soundness issues detected for each program analyzer.

abstract interpreters. Manual inspection of a random selection of
these issues showed that the variants for which Crab is imprecise
exhibited at least one of the following features: (1) usage of pointers,
(2) bitwise operations, (3) invariants expressing parity of variables.

In addition to detecting issues in program analyzers, α-Diff can
also compare their relative soundness and precision. To determine
the relative precision (resp. soundness) of an analyzer Ai with
respect to another analyzer Aj , our technique computes the proba-
bility that Ai returns safe (resp. unsafe) given that Aj returns safe
(resp. unsafe). Tab. 1 shows these probabilities for all analyzers.
Note that >0.99 stands for a probability between 0.99 and 1.00.

From the first row of the table, we observe that CBMC verifies
only 1% of the variants that the other analyzers prove safe. This is
due to the fact that CBMC uses bounded model checking, which
might fail to explore all program paths within a certain time limit.
In contrast, CPAchecker verifies 71% of the variants that CBMC
proves safe. As another example, SeaHorn verifies almost all vari-
ants that UAutomizer proves, while UAutomizer verifies only 81%
of the variants that SeaHorn proves. This indicates that SeaHorn
is more precise on the generated variants. On the other hand, α-
Diff did not detect any soundness issues for UAutomizer (Fig. 3),
which could explain the higher precision of SeaHorn on some vari-
ants. In general, analyzers might gain in precision when sacrificing
soundness since they consider fewer program executions.

Tab. 2 shows a direct comparison between SMACK and Crab,
which implement very different analyses. Note that <1% stands for
a percentage between 0 and 1. As shown in the table, for 3% of the
program variants, Crab reports unsafe whereas SMACK returns safe.
Both tools prove 23% of the variants safe and never return unknown
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Figure 4: Precision issues detected for each analyzer.

for the same program variant. This suggests that these analysis
techniques have complementary strengths and weaknesses.

In addition to comparing the results of different analyzers, α-Diff
can also be used to compare different configurations of the same
analyzer. Tab. 3 shows a direct comparison of two Crab configura-
tions, each using a different abstract domain, namely, Octagons [52]
and Polyhedra [20]. As shown in the table, there is a small number
of variants that are verified with Octagons but not with Polyhedra,
although in theory Polyhedra is strictly more precise than Octagons.
As pointed out by the designer of Crab5, this mismatch is due to
the fact that the domains use different widening operations [16, 19]
to speed up convergence of the fixed-point computation. This is
a caveat [53] that was independently evaluated in a recent paper
comparing different abstract domains [1].

In Tab. 4, we use α-Diff to compare the relative precision of
several abstract domains of Crab, namely, Intervals, Octagons, Poly-
hedra, RTZ (i.e., the reduced product of disjunctive Intervals and
Zones), and Zones. Across the domains, the differences in precision
are small for the generated variants. However, unsurprisingly, the
Intervals domain is typically less precise than the others. For in-
stance, Intervals can only verify 89% of the variants that are proved
with Zones. On the other hand, the very precise Polyhedra domain
can only verify 99% of the variants that are proved with Intervals.
As previously explained, this is due to the widening operation.

Our technique is effective in detecting a significant number
of soundness and precision issues in program analyz-
ers evenwhen slightly perturbing widely-used benchmarks.

The value of δ should be high relative to the total
number of tested analyzers since it effectively controls the
false-positive rate of the technique.

Our technique is useful in comparing the relative sound-
ness and precision of different analyzers or of different
configurations of the same analyzer.

RQ2: Are the issues relevant for analysis designers? To de-
termine whether the issues that α-Diff reports are relevant to anal-
ysis designers, we inspected all detected soundness issues as well
as a random selection of precision issues. Overall, we found ten
unique, undocumented soundness and precision issues in four (out
of six) program analyzers (excluding CBMC and UAutomizer). We

5https://github.com/seahorn/crab- llvm/issues/18

https://github.com/seahorn/crab-llvm/issues/18
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Table 1: Relative precision for the tested program analyzers.

Ai

Aj CBMC CPAchecker Crab SeaHorn SMACK UAutomizer

CBMC 1.00 0.01 0.01 0.01 0.01 0.01
CPAchecker 0.71 1.00 0.99 0.95 0.97 0.99
Crab 0.37 0.63 1.00 0.62 0.88 0.68
SeaHorn 0.77 0.98 >0.99 1.00 0.99 >0.99
SMACK 0.72 0.53 0.76 0.53 1.00 0.61
UAutomizer 0.57 0.82 0.89 0.81 0.93 1.00

Table 2: Comparison of results for SMACK and Crab.

SMACK
Crab unsafe unknown safe

unsafe 14% 22% < 1%
unknown 30% 0% 7%
safe 3% 0% 23%

reported nine of these issues to the designers of the four analyzers.
All reported issues were confirmed and three (in CPAchecker and
Crab) were fixed in only a few hours each. In what follows, we dis-
cuss the ten issues we found in detail. Note that we did not report
documented unsoundness or imprecision in the tested analyzers,
such as not detecting possible arithmetic overflows.

CPAchecker. Although for the experiments presented in this pa-
per we used the patched version of CPAchecker, α-Diff detected two
soundness issues in this analyzer, which were immediately fixed.
The first issue6 was revealed in a program variant whose simplified
version is shown in Fig. 5 (line 4 should be ignored). In this program,
x is assigned a non-deterministic integer and, therefore, the asser-
tion on line 3 can fail. A previous version of CPAchecker missed
this assertion violation due to a bug in its invariant-generation
component, which was unsound when trying to obtain information
about the factors of a multiplication whose product was zero.

The second issue7 was revealed in the simplified variant of Fig. 5
when considering line 4 (and ignoring line 3). According to the C
standard, the expression x == 1 evaluates to an integer of value
0 or 1, which is never equal to 99. Consequently, the assertion
on line 4 can fail since x is assigned a non-deterministic integer.
CPAchecker missed this assertion violation due to a bug in its
value analysis, which was unsound when analyzing nested binary
expressions such as the property asserted above.

Crab. Our technique detected two soundness issues in Crab. The
first issue8 made the inter-procedural analysis of Crab unsound in
the presence of recursion, and the bug was immediately fixed.

The second issue (which was reported together with the first) is
caused by Crab’s LLVM-based [42] front-end, which may optimize
the program by exploiting undefined behavior. For example, several
seed programs contain uninitialized variables. According to the
C standard, the behavior of a program that reads from such vari-
ables is undefined, that is, any behavior is correct. In these cases,
a compiler pass may under-approximate the behavior of the pro-
gram, for instance, by assuming that any read from an uninitialized
variable returns 0, to optimize the executable code. However, this
under-approximation potentially leads to unsoundness in program

6https://groups.google.com/d/msg/cpachecker-users/3JCOeNuoleA/fpr8ElaaBgAJ
7https://groups.google.com/d/msg/cpachecker-users/3JCOeNuoleA/YDT7LokZBwAJ
8https://github.com/seahorn/crab- llvm/issues/20

Table 3: Comparison of Crab Octagons and Polyhedra.

oct
pk unsafe unknown safe

unsafe 43% 1% < 1%
unknown < 1% 10% < 1%
safe < 1% < 1% 45%

analyzers that analyze the optimized code. This is because the orig-
inal program may fail when compiled without the optimization or
with a different compiler, whereas soundness is classically defined
as an over-approximation of all reachable states.

Note that our synthesized checks do not introduce any additional
undefined behavior since they only compare an in-scope expression
with a constant value. Therefore, any undefined behavior in the
variants already exists in the seed programs themselves.

We also reported two imprecision issues9 in the Polyhedra and
Octagons domains of Crab. In particular, the less precise Inter-
vals domain was able to verify the assertion in a program variant,
whereas the more precise Polyhedra domain found the variant un-
safe. As discussed in RQ1, such precision issues are possible for
abstract domains with a widening operation. The issue was similar
for the Octagons domain, which typically ignores dis-equalities. In
contrast, given the interval x = [0, 10] and the constraint x , 10, the
Intervals domain does compute the more precise interval x = [0, 9].

SeaHorn.We reported a soundness10 and a precision issue11 to
the designers of SeaHorn, who confirmed both issues. The sound-
ness issue was caused by SeaHorn’s LLVM-based front-end, which
is slightly different than Crab’s and, thus, results in different sources
of unsoundness.

Regarding the precision issue, the designers of SeaHorn ex-
plained that it is due to the conservative handling of bitwise op-
erations and numeric types. In particular, all numeric types are
abstracted into arbitrary-precision signed integers.

SMACK. We reported the soundness and precision issues12 that
are caused by the size-reduction heuristic in SMACK (see Sect. 2
for details). Although confirmed, these issues were not fixed since
this behavior was intended by the designers.

We also found several other soundness issues, which were due
to optimizations by SMACK’s LLVM-based front-end, just like in
Crab and SeaHorn. We did not report these issues to the designers
since their cause is clear.

In general, the reaction of the analysis designers to all reported
issues shows that α-Diff can detect important sources of unsound-
ness and imprecision. This is especially the case since the tested

9https://github.com/seahorn/crab- llvm/issues/18
10https://github.com/seahorn/seahorn/issues/152
11https://github.com/seahorn/seahorn/issues/157
12https://github.com/smackers/smack/issues/324

https://groups.google.com/d/msg/cpachecker-users/3JCOeNuoleA/fpr8ElaaBgAJ
https://groups.google.com/d/msg/cpachecker-users/3JCOeNuoleA/YDT7LokZBwAJ
https://github.com/seahorn/crab-llvm/issues/20
https://github.com/seahorn/crab-llvm/issues/18
https://github.com/seahorn/seahorn/issues/152
https://github.com/seahorn/seahorn/issues/157
https://github.com/smackers/smack/issues/324
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Table 4: Relative precision for abstract domains of Crab.

Di

Dj int oct pk rtz zones

int 1.00 0.97 0.97 0.97 0.89
oct 0.99 1.00 0.99 0.99 0.99
pk 0.99 0.99 1.00 0.98 0.99
rtz >0.99 >0.99 0.99 1.00 >0.99
zones 1.00 >0.99 0.99 0.99 1.00

analyzers are mature tools that are under active development. More-
over, five of these analyzers (excluding Crab) have participated in
SV-COMP, which did not reveal any of the above bugs.

Our technique detected ten unique, undocumented
soundness and precision issues in four (out of six) mature
program analyzers.

The analysis designers confirmed all reported issues and
fixed three of them, which were previously unknown.

RQ3: Are the soundness issues about undefined behavior
relevant for users? Half of the tested program analyzers, namely
Crab, SeaHorn, and SMACK, might be unsound in the presence of
undefined behavior. As discussed earlier, this unsoundness is caused
by compiler optimizations that under-approximate the possible pro-
gram executions. Moreover, different compilers are inconsistent in
approximating the program executions in the presence of undefined
behavior and, consequently, the results of analyzers that analyze
executable code can be contradictory. The above three analyzers
are, therefore, sound with respect to the LLVM bit-code, but not
the C source code, which users typically provide as input.

To shed more light on what users expect from program analyzers
in the presence of undefined behavior, we performed a survey of
16 professional developers, who we hired on Upwork13. To screen
the candidates, we used two short interview questions (about type-
conversion rules and pointer usage in C). Out of the candidates that
replied correctly, we selected those that had experience with C.

The survey contained nine short tasks. Each task included a
small C program, which was a simplified version of a program
variant generated by α-Diff. For every task, we asked whether the
assertion in the given program can fail, and just like a program
analyzer, a survey participant could respond with yes (i.e., unsafe),
no (i.e., safe), and I don’t know (i.e., unknown).

To pilot the survey tasks, we sent the survey to four students and
interns who study Computer Science and already have a Bachelor’s
degree. We asked these participants if they found any portion of the
survey difficult to understand and requested their feedback. Their
responses were solely used to improve the survey.

After finalizing the tasks, we sent the survey to the professional
developers. The tasks were presented to the developers in a random-
ized order, but in total, the survey included three unsafe programs
with well-known sources of undefined behavior. The other six tasks
involved programs for which most analyzers agreed regarding their
safety. We used these six tasks to exclude participants who gave the

13https://www.upwork.com/

1 int main() {

2 int x = ⋆;

3 assert 2 * x != 0;

4 assert (x == 1) != 99 && x == 1;

5 return x == 1;

6 }

Figure 5: Soundness issues in CPAchecker.

wrong answer to at least four (out of six) of these questions. Based
on this threshold, we excluded four (out of 16) survey participants.

Tab. 5 shows the survey responses from the twelve developers
that we did not exclude. The first column shows the task identifier:
tasks 7–9 contain undefined behavior. Next to each task identifier,
we indicate whether there exists an execution of the correspond-
ing program that fails. For example, when the executable code
of the programs in tasks 7–9 is not optimized, the assertions can
be violated. The remaining columns of the table show the survey
responses categorized as unsafe, unknown, and safe.

As shown in the table, the majority of the survey participants
(ten out of twelve professional developers) considered the programs
with undefined behavior to be unsafe. This suggests that program
analyzers should treat undefined behavior as non-determinism,
instead of optimizing it away.

On the other hand, the four excluded developers were not able to
give correct answers to at least four questions from tasks 1–6, and
the remaining twelve developers gave four wrong answers to these
tasks (see Tab. 5). This is a strong indication that even professional
C developers benefit from program analysis.

Professional developers, who are the target users of pro-
gram analyzers, consider programs that may fail due to
undefined behavior as unsafe.

RQ4: What is the effect of the search strategy? To generate
a seed-program variant, our technique explores the search space
of all possible candidate expressions using five different search
strategies (see Sect. 3.1). To evaluate how each search strategy
affects the number of detected issues, we ran α-Diff on 20 seed
programs, which were randomly selected from the seed programs
used in the evaluation of RQ1. For each run of α-Diff on the seed
programs, we enabled a different search strategy (with the same
budget per seed), and we measured the number of soundness and
precision issues that were found. We used the default configuration
of our tool, but with a batch-check size of 1, to prevent batch checks
from influencing the results.

Table 5: Survey responses from professional C developers.

Task Survey Response
Identifier unsafe unknown safe
1 (unsafe) 11 0 1
2 (unsafe) 12 0 0
3 (unsafe) 11 0 1
4 (safe) 2 0 10
5 (safe) 0 0 12
6 (safe) 0 0 12
7 (unsafe) 10 1 1
8 (unsafe) 10 1 1
9 (unsafe) 10 1 1

https://www.upwork.com/
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Table 6: Effect of search strategies on the number of issues.

Search Strategy Number of Detected Issues
must-unsound ≥ 3-unsound ≥ 3-imprecise

Uniform-Random 2 2 71
Breadth-Biased 1 2 70
Depth-Biased 1 1 77
Random-Walk 0 0 59
Guided-Walk 1 2 39

Tab. 6 shows the effect of the five search strategies on the number
of detected issues. The first column of the table shows the search
strategy, the second the cumulative number of soundness issues
detected in all must-unsound analyzers, the third the soundness
issues detected in ≥ 3-unsound analyzers (that is, in 3-, 4-, and
5-unsound analyzers), and the fourth the precision issues detected
in ≥ 3-imprecise analyzers. In general, the results suggest that
the static search strategies are more effective in detecting sound-
ness and precision issues than the dynamic strategies. Among the
static strategies, the Uniform-Random strategy helps find the most
soundness issues, although the differences are small. Among the
dynamic strategies, the Random-Walk strategy performs the worst.
We also observed that Breadth-Biased and Guided-Walk each detect
a soundness issue that is not found by any other strategy.

The static search strategies are more effective in detecting
soundness and precision issues than the dynamic strate-
gies, with the Uniform-Random strategy finding the most
soundness issues.

RQ5: What is the effect of batch checks? To evaluate the in-
fluence of the batch-check size on the effectiveness of our approach,
we ran α-Diff on the same seed programs that were selected for
the evaluation of RQ4. We used the Uniform-Random search strat-
egy, and otherwise, the same configuration of our tool as in the
experiment of RQ4.

Tab. 7 shows the effect of the batch-check size on the number of
detected issues. Overall, larger batch-check sizes are more effective
in detecting soundness and precision issues. During our experi-
ments, we also found that larger batch-check sizes typically help
in detecting the same issues faster (that is, with a smaller initial
budget) in comparison to smaller sizes.

Larger batch-check sizes are more effective and efficient in
detecting soundness and precision issues.

5.4 Threats to Validity
We have identified these threats to the validity of our experiments.

Selection of seed programs.Our experimental results may not
generalize to other seed programs [56]. However, we evaluated our
technique by selecting seed programs from most categories of a
well-established repository of verification tasks [7] and by running
the program analyzers on tens of thousands of program variants.
We, therefore, believe that our benchmark selection significantly
helps mitigate this threat and aids generalizability of our results.

Selection of program analyzers. For our experiments, we
used the program analyzers described in Sect. 5.2. Our findings

Table 7: Effect of batch-check size on the number of issues.

Batch-Check Size Number of Detected Issues
must-unsound ≥ 3-unsound ≥ 3-imprecise

1 2 2 71
2 6 6 110
4 3 5 158
8 10 10 193
16 9 10 165
32 11 22 201

depend on bugs, unsoundness, and imprecision in these analyzers
and, thus, may not generalize. However, our selection includes a
wide range of program-analysis techniques, like model checking
and abstract interpretation. Moreover, all of these techniques are
implemented in mature tools.

Generation of synthetic benchmarks. Synthesizing bench-
marks may introduce bias. However, each variant synthesized by
our technique differs from the seed program by a single assertion,
which is in turn randomly generated. As a result, the perturbation
of the seed is small and should not introduce systematic bias.

Type of checked properties. Our results may also not gener-
alize to other types of checks, for example, for points-to properties.
Our implementation targets numerical safety properties since they
are found in almost every program and can, therefore, be checked
by most analyzers. Independently, our approach and implemen-
tation are configurable and may be extended to also synthesize
checks for other types of properties, for instance, pointer aliasing.

Randomness in check synthesis. Another potential threat
has to do with the internal validity [56] of our experiments, which
refers to whether any systematic errors are introduced in the experi-
mental setup. A typical threat to the internal validity of experiments
with randomized techniques is the selection of seeds. Recall that
our check-synthesis component selects candidate expressions and
constants in a randomized way. To ensure deterministic results and
to avoid favoring certain program analyzers over others, α-Diff uses
the same, predefined random seeds for all analyzer configurations.

Survey of developers. A potential threat to the validity of our
results is that the survey questions were not understandable or
clearly presented. To alleviate this concern, we piloted the survey
and fine-tuned the questions based on the feedback we received.
Moreover, the survey responses might not be representative of other
professional C developers. However, we screened the candidates
and excluded any participants who were not experienced enough.

6 RELATEDWORK
In the literature, there are several techniques for evaluating different
qualities of program analyzers. To ensure soundness of an analyzer,
existing work has explored a wide spectrum of techniques requiring
varying degrees of human effort, for instance, manual proofs (e.g.,
[49]), interactive and automatic proofs (e.g., [6, 9]), testing (e.g.,
[11, 50]), and “smoke checking” [4]. There also exist evaluations of
the efficiency [57] and precision [45] of various analyses.

Our approach is the first to differentially test real-world program
analyzers with the goal of detecting soundness and precision issues
in arbitrary code. Specifically, we identify such issues by comparing
the results of several analyzers, instead of relying on fixed test
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oracles. Although such a comparison requires running multiple
analyzers, this is not necessarily a weakness given their abundance.

Testing analyzers on randomly generated programs. Run-
ning a program analyzer on randomly generated input programs
has proved effective in revealing crashes [21]. However, it is very
challenging to randomly generate programs from scratch such that
they reveal soundness and precision issues in mature analyzers.
Instead, our approach takes as input existing, complex programs
as seeds and uses them to generate seed variants by synthesizing
checks for numerical properties.

Testing symbolic execution engines. Kapus and Cadar use
randomprogram generation in combinationwith differential testing
to find bugs in symbolic execution engines [38], by for instance
comparing crashes, output differences, and code coverage. Unlike
our approach, this work specifically targets symbolic execution
engines and compares them on randomly generated programs.

Testing abstract interpreters.A common technique for reveal-
ing soundness issues in analyzers that infer invariants (e.g., abstract
interpreters [16–18]) is to turn invariants inferred at different pro-
gram locations into explicit assertions and then check if these are
violated in concrete program executions [2, 21, 59]. Concrete execu-
tions (e.g., from existing test suites) are also helpful in identifying
certain precision issues by observing the effect of intersecting the
inferred invariants with concrete runtime values on the number
of generated warnings. In contrast, our technique works for any
type of safety checker. In addition, if any of the tested analyzers
perform an under-approximation (e.g., a bounded model checker
or a dynamic symbolic execution engine), our technique essentially
compares the results of the other analyzers against a test suite that
is automatically generated on the fly.

A usual source of soundness and precision issues in abstract
interpreters is bugs in the implementation of the underlying ab-
stract domains and their operations (e.g., intersection and union
of abstract states). Existing techniques [11, 48, 50] for detecting
such issues use well-known mathematical properties of domains
as test oracles. In contrast, our approach can not only detect is-
sues in domain implementations, but also in abstract transformers,
which model program statements such as arithmetic operations or
method calls. In fact, the bugs we found in Crab would not have
been detected by these techniques.

Evaluating unsoundness in static analyzers. Unsoundness
is ubiquitous in static analyzers [47], typically to intentionally favor
other important qualities, such as precision or efficiency. A recent
technique systematically documents and evaluates the sources of
intentional unsoundness in a widely used, commercial static ana-
lyzer [13]. The experimental evaluation of this work sheds light on
how often the unsoundness of the analyzer causes it to miss bugs.
In comparison, our approach treats any tested analyzer as a black
box, and it is also able to detect unintentional unsoundness and
imprecision, caused by bugs in the implementation of the analyzers.

Even more recently, an empirical study evaluated how many
known bugs are missed by three industrial-strength static bug de-
tectors [33]. An important difference with our approach is that the
checked properties in this study did not necessarily lie within the
capabilities of the analyzers. In contrast, we synthesize numerical
properties, which should be handled by all analyzers we tested.

Moreover, our approach automatically synthesizes potentially er-
roneous programs and uses differential testing to identify both
soundness and precision issues.

Formally verifying program analyzers. To avoid any sound-
ness issues in the first place, interactive theorem provers are often
used to verify the soundness of the design of a program analyzer.
For instance, this is a common approach for type systems [26, 55].
However, such proofs cannot generally guarantee the absence of
soundness issues in the actual implementation of the analyzer. To
address this problem, the Verasco [37] project generates the exe-
cutable code of several abstract domains directly from their Coq
formalizations. Even if this approach were more practical, it would
still not easily detect precision issues in an analyzer.

Testing compilers. Compilers typically apply different light-
weight program analyses (e.g., constant propagation) to produce
more efficient code. Existing work [43, 44, 46, 58, 60] has proposed
several techniques for detecting bugs in compilers, and indirectly,
in their analyses. These techniques often use metamorphic testing
to derive test oracles [5], for instance, by comparing the output of
two compiled programs where one is a slight, semantics-preserving
modification of the other. In contrast, our approach compares sev-
eral analyzers at once and uses their results to detect soundness
and precision issues. In addition, our check synthesis instruments
the seed program with assertions that may alter its semantics, for
example, by introducing failing executions.

Synthetic program-analysis benchmarks. In the context of
automatic test generation, LAVA [24] is a related technique that in-
jects definite vulnerabilities, which may be triggered by an attacker-
controlled input. In contrast, our instrumentation may add both
assertions that do not hold to detect soundness issues as well as
assertions that do hold to detect precision issues. As a result, in our
case the ground truth is not known, which motivates our two mech-
anisms for detecting soundness and precision issues (Sect. 3.2). In
addition, assertions that detect soundness issues do not necessarily
need to be triggered by a program input (e.g., see Fig. 2).

7 CONCLUSION
We have proposed a novel and automated technique for differen-
tially testing the soundness and precision of program analyzers.
We used it to test six mature, state-of-the-art analyzers on tens
of thousands of programs. Our technique found soundness and
precision issues in four of these analyzers.

In future work, we plan to explore how to synthesize checks for
different types of properties (for instance, hyperproperties [15] like
information flow, and liveness properties like termination).
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