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Abstract
Checking the reliability of machine-learning mod-
els is a crucial, but challenging task. NOMOS is an
existing, automated framework for testing general,
user-provided functional properties of models, in-
cluding so-called hyperproperties expressed over
more than one model execution. NOMOS aims to
find model inputs that expose “bugs”, that is, prop-
erty violations. However, performing thousands of
model invocations during testing is costly both in
terms of time and money (for metered APIs, such as
OpenAI’s).
We present LAZ (pronounced “lazy”), an extension
of NOMOS that automatically minimizes the number
of model invocations to boost the test throughput
and thereby find bugs more efficiently. During test
execution, LAZ automatically identifies redundant
invocations—invocations where the model output
does not affect the final test outcome—and skips
them, much like lazy evaluation in certain program-
ming languages. This optimization enables a second
one that dynamically reorders model invocations to
skip the more expensive ones. As a result, LAZ finds
the same number of bugs as NOMOS, but does so
median 33% and up to 60% faster.

1 Introduction
Machine-learning (ML) models are an integral part of every-
day life, for instance by classifying street signs in self-driving
cars or natural-language commands in smart homes. As more
and more tasks depend on ML models, it is increasingly im-
portant to validate their reliability. For this reason, there is a
significant amount of work on checking or ensuring robustness
and fairness properties of ML models, e.g., [Huang et al., 2017;
Gehr et al., 2018; Singh et al., 2019; Albarghouthi et al., 2017;
Bastani et al., 2019; Urban et al., 2020; Carlini and Wag-
ner, 2017; Goodfellow et al., 2015; Madry et al., 2018;
Galhotra et al., 2017; Udeshi et al., 2018; Tramèr et al., 2017;
Athavale et al., 2024].
NOMOS. Recently, Christakis et al. [Christakis et al., 2023]
presented NOMOS, an automated framework for expressing
and testing functional-correctness properties of models, sub-
suming more specific properties such as robustness or fairness.

In particular, NOMOS provides a specification language for
expressing such properties, including so-called hyperproper-
ties [Clarkson and Schneider, 2008], expressed over more than
one model execution. For example, a hyperproperty for a
model that predicts whether a person should get a loan could
be: if the model predicts that a person should get the loan and
their salary increases, then the model should still predict that
they get the loan. This is a 2-safety property because checking
its correctness requires two model invocations, one before the
salary increase and one after.

NOMOS also includes a fully automated framework (based
on metamorphic testing [Chen et al., 1998; Segura et al.,
2016]) for validating its specifications. On a high level, the
framework takes as input the model under test and a set of
specified properties that should hold for the model. The prop-
erties are then compiled into a test harness, that is, code that
tests the model against the properties. Specifically, the harness
generates inputs for the model (using metamorphic testing),
calls the model with these inputs, and evaluates whether the
properties hold. Note that each test targeting a k-safety prop-
erty needs to invoke the model k times. For example, for the
loan predictor above, a single test would have to call the model
for a person with salary, say, 50K, and then again, for the same
person but with salary, say, 55K. As output, the framework pro-
duces the failing tests, i.e., those for which the model violated
the specified properties.

LAZ. To effectively test each k-safety property, NOMOS
generates thousands of tests, each invoking the model k times.
However, such a high number of invocations is costly, both
in terms of runtime and money (for metered APIs, such as
OpenAI’s). In this paper, we alleviate this issue by presenting
LAZ (pronounced “lazy”), an extension of NOMOS that uses
static analysis to automatically minimize the number of model
invocations, and consequently, boost the test throughput (tests
per second).

More precisely, during test execution, LAZ uses a form
of static analysis called abstract interpretation [Cousot and
Cousot, 1977] to automatically identify and skip redundant
model invocations, that is, invocations where the model output
does not affect the final test outcome. In other words, model
invocations are performed lazily depending on whether their
outputs may affect the target hyperproperty, much like lazy
evaluation in certain programming languages. This optimiza-
tion enables a second one that dynamically reorders model



invocations such that the more expensive ones are skipped
more frequently.

We evaluate the effectiveness of LAZ by using it to test ML
models from five distinct domains, namely, tabular data, image
classification, speech-command classification, sentiment anal-
ysis from natural language, and action policies. Compared to
NOMOS, when given the same test budget, LAZ finds the same
number of bugs, but it increases the test throughput by median
33% (and up to 60%) and skips median 30% of redundant
model invocations (and up to 47%).

Contributions. Overall, this paper makes the following con-
tributions:

• We present a novel static-analysis technique for lazily
testing hyperproperties of ML models.

• We implement our technique in the publicly available1

tool LAZ.

• We demonstrate the effectiveness of LAZ in increasing
test throughput across a wide range of domains.

Outline. Our paper is organized as follows. In the following
section, we give the necessary background on NOMOS. In
Sects. 3 and 4, we describe how LAZ skips and reorders
model invocations. Sect. 5 describes implementation aspects
of LAZ. We present our experimental evaluation in Sect. 6,
discuss related work in Sect. 7, and conclude in Sect. 8.

2 Background on NOMOS
In general, a NOMOS specification adheres to a particular
structure that defines:

• a precondition using zero or more requires statements.
The precondition expresses the conditions under which
the model should be invoked. Each condition is a user-
provided relation involving zero or more model inputs.

• the body, which may be arbitrary Python code invoking
the model under test.

• a postcondition using zero or more ensures statements.
The postcondition constitutes the target hyperproperty
and expresses the conditions that should hold after exe-
cuting the body; these conditions may also refer to model
outputs, unlike for preconditions.

We show two example NOMOS specifications in Fig. 1.

MNIST. Consider a model trained over the MNIST
dataset [LeCun et al., 1999] to classify images of handwritten
digits from 0 to 9. An example hyperproperty could be: if
the model correctly classifies a blurred image, then the model
should also correctly classify its original (i.e., not blurred)
version. This 2-safety property is shown in Fig. 1a.

For an original input image x1 (line 1), line 2 creates a
blurred version x2. Variable v1 on line 3 is assigned the
correct label for x1. Lines 4–5 declare two outputs, d1 and
d2, which are assigned the model’s prediction when calling it
with x1 and x2, respectively (see body on lines 7–10). (Line 6
should be ignored for now.) The postcondition on line 11
expresses the above hyperproperty, that if the blurred image

1https://github.com/Rigorous-Software-Engineering/LaZ

1 input x1;
2 var x2 := blur(x1);
3 var v1 := label(x1);
4 output d1;
5 output d2;
6 returns predict [0,9];
7 {
8 d1 = predict(x1)
9 d2 = predict(x2)

10 }
11 ensures d2==v1 ==> d1==v1;

(a) 2-safety property for MNIST.

1 input s1;
2 var s2 := relax(s1);
3 output o1;
4 output o2;
5 returns play [0,1];
6 {
7 o1, o2 = 0, 0
8 rs = []
9 for _ in range(10):

10 rs.append(randInt(0, MAX_INT))
11 for i in range(10):
12 o1 += play(s1, rs[i])
13 o2 += play(s2, rs[i])
14 }
15 # 0-lose, 1-win
16 ensures o1 <= o2;

(b) 20-safety property for LunarLander.

Figure 1: Example hyperproperties specified in NOMOS.

x2 is correctly classified, the original image x1 should also be
correctly classified.

LunarLander. Now, consider the LunarLander action pol-
icy, a Gym environment [Brockman et al., 2016] where the
goal of a spacecraft is to land on an uneven surface. Land-
ing becomes easier by increasing the initial distance between
the spacecraft and the surface, therefore giving the spacecraft
more time to land. So, an example hyperproperty could be:
if the spacecraft lands successfully, then increasing the dis-
tance to the surface should also result in landing successfully.
However, the environment is stochastic, and to account for
any randomness, the hyperproperty could also be cumulative:
if the spacecraft lands successfully x times out of n, then in-
creasing the distance to the surface should result in landing
successfully at least x times out of n. The latter property is
shown in Fig. 1b.

Line 1 declares an input s1, which is an initial state of the
landing game. Line 2 “relaxes” s1 to produce s2, which is
the initial state of an easier version of the same landing game
obtained by increasing the distance to the surface. (Line 5
should be ignored for now.) The body (lines 6–14) initializes
outputs o1 and o2 and plays the game from s1 and s2 in a
loop (lines 11–13) while accumulating the number of wins in
o1 and o2. To account for stochasticity in the environment,
each loop iteration uses a different environment random seed
(from array rs initialized on lines 8–10). As expected, the

https://github.com/Rigorous-Software-Engineering/LaZ


1 while budget > 0:
2 # input generation
3 s1 = randState()
4 s2 = relax(s1)
5 # body
6 o1, o2 = 0, 0
7 rs = []
8 for _ in range(10):
9 rs.append(randInt(0, MAX_INT))

10 for i in range(10):
11 o1 += play(s1, rs[i])
12 o2 += play(s2, rs[i])
13 # postcondition
14 if o1 <= o2 :
15 passed += 1
16 else:
17 postcond_violtn += 1
18 process_bug()
19 budget -= 1

Figure 2: Snippet of test harness generated by NOMOS from Fig. 1b.

postcondition on line 16 expresses that the number of wins for
the easier game should at least match the number of wins for
the original game. Note that the property depends on 20 model
invocations (2 in each of 10 loop iterations) and is, therefore,
a 20-safety property.

NOMOS specifications are automatically compiled into a test
harness, i.e., code that tests the model against the properties.
Fig. 2 shows a snippet of the test harness generated by NOMOS
from the specification of Fig. 1b. NOMOS executes a user-
specified number of tests, stored in budget (line 1). Each
test consists in generating a random input s1 and relaxing it
into s2 (lines 3–4), running the body of the specification with
these inputs (lines 6–12), and checking whether a bug is found
(lines 14–18), where a bug is a postcondition violation. Any
found bugs are processed for de-duplication.

As output, NOMOS provides the unique failing tests, that is,
those for which the postcondition is violated.

3 Skipping Redundant Model Invocations
This section describes how LAZ skips redundant model

invocations while running a test harness such as the one in
Fig. 2. A model invocation is considered redundant if, no
matter what the model returns, the final test outcome is not
affected. In other words, whether the postcondition holds or
fails does not depend on the output of that particular model
invocation.

To determine whether an invocation is redundant, LAZ uses
a form of static analysis called abstract interpretation [Cousot
and Cousot, 1977]. Abstract interpretation abstracts the pro-
gram state into elements of abstract domains. We use the
Intervals domain [Cousot and Cousot, 1976], which abstracts
numerical variables into intervals of their possible values.

In particular, when generating a test harness from a NOMOS
specification, LAZ inserts a redundancy check before each
model invocation, e.g., before line 11 and 12 of Fig. 2. For
each of these checks, LAZ uses an abstract interpreter to stati-
cally compute the range of all possible values for the variables

that affect the postcondition (e.g., o1 and o2 in the case of
LunarLander). The analyzer then statically checks the post-
condition with these ranges. More specifically, if the abstract
interpreter can already verify that the postcondition holds (re-
spectively, fails) for all possible values of its variables, then
the specific output of each upcoming model invocation cannot
influence the test outcome. As a result, these invocations may
be soundly skipped at runtime.

LAZ builds on off-the-shelf abstract interpreters by trans-
forming NOMOS specifications into programs supported
by such analyzers. As a result, we can directly benefit
from decades of static-analysis research and existing high-
performance implementations.
LunarLander. Next, we show LAZ in action for the test
harness of Fig. 2, which calls the model 20 times.

Before the first model invocation on line 11 of Fig. 2 (in the
first of 10 loop iterations), LAZ generates the Python program
of Fig. 3a to reflect what is yet to run for this test. This program
will be then passed to the abstract interpreter for analysis, and
it is generated in the following four steps.

First, all remaining model invocations are replaced by
calls to nondet, which simulate that the model may non-
deterministically return any possible value (lines 3–4). In the
case of LunarLander, the model may return any value in the
range [0, 1], which is encoded as nondet(0,1) in Fig. 3a.

Note that we extend the NOMOS specification language to
express the range of possible values returned by a model, e.g.,
see line 5 of Fig. 1b. Specifically, we add the statement

returns fn [low , hi ];

where fn is a function name and [low , hi ] is the range of
all possible integer values that the function returns. This
interval syntax is sufficiently expressive for our purposes since
integers can always be used as indices in an array containing
all possible (non-integer) return values.

Second, after replacing the model invocations, any unused
variables are removed, e.g., s1, s2, and rs in the case of
LunarLander. Third, all remaining variables, in this case o1
and o2, are assigned the value they have at runtime right be-
fore the model invocation that triggered the analysis. These
assignments appear at the beginning of the generated program
(line 1 of Fig. 3a). As another example, consider the MNIST
specification of Fig. 1a. For this specification and its corre-
sponding test harness, the variables remaining after replacing
the model invocations are d1, d2 as well as v1, which refers
to the result of calling label(x1).

Finally, the postcondition p is encoded using a non-
deterministic if-statement with a branch that asserts p and
another that asserts ¬p. For instance, lines 6–9 of Fig. 3a
encode the postcondition from Fig. 1b: line 7 asserts the post-
condition itself, and line 9 asserts its negation.

Note that, in static analysis, assertions are proof obligations,
that is, the analyzer is asked to verify their validity. The non-
deterministic if-statement simply instructs the analyzer to try
to verify each assertion independently of each other. If either
of them is verified (i.e., if the postcondition always holds or
always fails), then all upcoming model invocations are redun-
dant and, thus, skipped. If the assertions remain unverified, it
means that the test outcome cannot yet be determined; it still



1 o1, o2 = 0, 0
2 for _ in range(10):
3 o1 = o1 + nondet(0,1)
4 o2 = o2 + nondet(0,1)
5

6 if nondet(0,1) == 0:
7 assert (o1 <= o2)
8 else:
9 assert not(o1 <= o2)

(a) Before the first model invocation.

1 o1, o2 = 6, 2
2 o2 = o2 + nondet(0,1)
3 for _ in range(2):
4 o1 = o1 + nondet(0,1)
5 o2 = o2 + nondet(0,1)
6

7 if nondet(0,1) == 0:
8 assert (o1 <= o2)
9 else:

10 assert not(o1 <= o2)

(b) Before the 16th model invocation.

Figure 3: Example programs passed to the abstract interpreter when testing LunarLander with the harness of Fig. 2.

depends on the concrete values returned by the model, and no
model invocations are skipped yet. The latter is exactly the
case for the program of Fig. 3a.

Now, assume we execute 15 (out of 20) model invocations
without finding any of them to be redundant. Let us also
assume that until this point the model has won six games start-
ing from s1 and two games starting from s2. Before the 16th
model invocation on line 12 of Fig. 2 (in the eighth of 10 loop
iterations), LAZ generates the program of Fig. 3b to reflect
what is yet to run for this test. As before, the model invoca-
tions are replaced by calls to nondet. Moreover, the number
of outstanding model invocations is updated on lines 2–3,
and variables o1 and o2 are assigned 6 and 2, respectively, on
line 1—these are their values before the 16th model invocation,
which triggered the analysis.

In this scenario, o2 can become at most 5 by the end of the
test. Since o1 has value 6 and does not decrease, the postcon-
dition o1 <= o2 can never be satisfied. In fact, the analyzer
verifies the assertion on line 10 of Fig. 3b by evaluating the
intervals for o1 and o2 as

o1 = [6, 6] + 2 ∗ [0, 1] = [6, 8]

o2 = [2, 2] + 3 ∗ [0, 1] = [2, 5]

and proving that [6, 8] > [2, 5].
As a result, LAZ now informs NOMOS that the remain-

ing five model invocations of this test may be skipped. By
skipping these invocations, the test directly proceeds to the
postcondition evaluation, and a bug is reported.

This optimization enables a second one that dynamically
reorders the model invocations such that the more expensive
ones are skipped more frequently. For instance, in the Lu-
narLander example, we skipped three invocations from relaxed
state s2 and two from harder state s1. If the invocations from
s1 are more expensive, reordering lines 11 and 12 of Fig. 2
could have allowed skipping more such invocations (and fewer
from s2).

4 Reordering Model Invocations
Given a NOMOS specification, it is difficult to statically deter-
mine the most effective order of model invocations in terms of
test throughput; that is, in terms of skipping more expensive
invocations more frequently and thereby increasing the num-
ber of executed tests per second. However, during a testing

campaign with thousands of tests, the most effective order
could be dynamically observed from a small subset of tests
and then used for the rest of the campaign.

This is exactly what LAZ does. In particular, the budget of a
testing campaign (e.g, line 1 of Fig. 2 in the case of LunarLan-
der) is split into an exploration and an exploitation phase. The
initial exploration phase tries all model-invocation orders for
a small fraction of the budget. In practice, trying all invoca-
tion orders simply involves a couple of syntactic variations
of the original harness. For instance, syntactically speaking,
the harness of Fig. 2 contains two model invocations. In this
case, the exploration phase would observe the performance for
tests where the model invocations occur as they appear in the
figure (which is exactly how they appear in the specification
of Fig. 1b) as well as for tests where the model invocations
occur in reverse order (i.e., by swapping lines 11 and 12 of
Fig. 2).

Next, the exploitation phase uses the observed performance
characteristics to select the most effective invocation order
for the rest of the campaign budget. More specifically, LAZ
selects the order with the highest test throughput and resolves
any ties by selecting the order with the highest number of
skipped invocations. This design can be viewed as an instanti-
ation of ϵ-first policies for multi-armed bandits [Tran-Thanh
et al., 2010].

The high-level algorithm for the exploration phase in LAZ
is shown in Alg. 1. The algorithm takes four input parameters:
(1) the NOMOS specification, (2) the budget for the testing
campaign, (3) the percentage of tests to be used for explo-
ration, and (4) the margin (in percent) of what constitutes a
meaningful difference in running time across different invoca-
tion orders. The last parameter ensures that small fluctuations
in running time are not decisive when selecting the best invo-
cation order. The algorithm returns the configuration with the
best invocation order.

First, the algorithm determines the number of all possible
configurations (lines 1–3). Next, it computes the exploration
budget per configuration by splitting the total exploration bud-
get equally across configurations (lines 4–5). For each config-
uration, the algorithm performs the exploration and records
the running time as well as the number of redundant model
invocations (lines 6–13). Finally, it selects the most effective
configuration, which is then used in the exploitation phase
(lines 14–17).



Algorithm 1 The LAZ exploration phase
Input: spec, // NOMOS specification
Input: testBudget, // total number of tests in the campaign
Input: explorePt, // percentage of tests to use for exploration
Input: marginPt // time margin (in percent) across orders
Output: bestCfg // configuration with best invocation order

1: // Compute number of possible invocation orders
2: numInvs = GETMODELINVS(spec)
3: numCfgs = numInvs!
4: // Compute number of tests per order
5: numTests = (testBudget * explorePt) / numCfgs
6: // Explore all invocation orders
7: times = []; skipInvs = []
8: for i = 0 to numCfgs:
9: ord = GETINVORDER(i)

10: // Record time and number of skipped invocations
11: t, s = RUNTESTSWITHCFG(spec, numTests, ord)
12: times += [t]; skipInvs += [s]
13: end for
14: // Choose the fastest invocation order by
15: // resolving ties with number of skipped invocations
16: bestCfg = GETBESTCFG(times, marginPt, skipInvs)
17: return bestCfg

5 Implementation
We implemented LAZ in Python as an extension of the
NOMOS framework. For the static analysis, we use the MOPSA
abstract interpreter [Journault et al., 2019] with the default
Intervals domain and a setting to unroll all loops. Note that
MOPSA may be replaced by any other analyzer that can pre-
cisely reason about intervals and is sufficiently fast. To mini-
mize the overhead of the abstract interpreter, LAZ caches all
analysis queries as well as their results and uses the cache
throughout the testing campaign.

The exploration phase of LAZ can be extended to include
additional configurations. For instance, if model invocations
are very fast, the analysis overhead may be too high to be
beneficial. In such cases, LAZ can include a configuration that
disables the analysis during the exploration phase; if the anal-
ysis overhead indeed turns out to be prohibitive, the analysis
is automatically disabled during the exploitation phase. We
experiment with such a setup and present our results in the
next section.

6 Experimental Evaluation
We evaluate the effectiveness of LAZ by focusing on the fol-
lowing research questions:
RQ1: Does LAZ improve test throughput?
RQ2: Does the exploration phase improve test throughput?
RQ3: How significant is the analysis overhead?
RQ4: What is the effect of LAZ’s hyperparameters?

6.1 Benchmarks
We use LAZ to test models from a variety of different do-
mains, involving tabular data (GermanCredit [Hofmann, 1994]

and COMPAS [Larson et al., 2016]), images (MNIST [Le-
Cun et al., 1999]), natural language (HotelReview [Liu,
2017]), speech (SpeechCommand [Warden, 2018]), and action
policies (LunarLander and BipedalWalker [Brockman et al.,
2016]). We use the pre-trained models and the hyperproperties
specified for these models from NOMOS [Christakis et al.,
2023]—there is a total of 32 specifications.

6.2 Setup
We run our experiments using NOMOS and the following
variants of LAZ:

1. NOMOS: the testing framework by Christakis et al. that
eagerly performs all model invocations;

2. LAZ-NAIVE: LAZ without the exploration phase; it
performs all model invocations in the order they appear
in the specification and skips redundant invocations;

3. LAZ: default LAZ with the exploration phase; it uses
the best model-invocation order during the exploitation
phase and skips redundant invocations;

4. LAZ-MAN: LAZ where all queries to the static analyzer
are replaced with manually derived conditions that iden-
tify redundant model invocations with minimal overhead;
it provides an upper bound on the test throughput that
could only be achieved if the static analysis had practi-
cally no performance overhead;

5. LAZ-FLEX: LAZ with an additional configuration in
the exploration phase that determines whether it pays off
to enable the static analysis in the exploitation phase; if
it is determined that the analysis should be disabled, no
model invocations are skipped in the exploitation phase;
if the analysis should be enabled, it also uses the best
model-invocation order;

6. LAZ-FLEX-MAN: LAZ-FLEX but with the manually
derived conditions that identify redundant calls with min-
imal overhead.

Hyperparameters. For variants 3–6 that include the explo-
ration phase, we compare several hyperparameter settings.
The default setting uses 10% of the tests for exploration (pa-
rameter explorePt from Alg. 1) and a 10% margin to decide
the winning configuration (parameter marginPt from Alg. 1).
To evaluate this setting, we independently double and halve
each of the two parameters to obtain the following explorePt–
marginPt settings expressed in percent: 5–10, 10–5, 20–10,
10–20. We compare the default 10–10 setting with these.

Compared to LAZ and LAZ-MAN, LAZ-FLEX and LAZ-
FLEX-MAN have one more configuration to explore (the one
where the static analysis is disabled). So, given the same
explorePt budget, the number of tests per configuration would
be smaller for LAZ-FLEX and LAZ-FLEX-MAN than for LAZ
and LAZ-MAN. To ensure that we do not favor the exploration
phase of LAZ and LAZ-MAN, we use the same number of tests
per configuration during the exploration phase across all the
above variants. As a result, LAZ and LAZ-MAN scale down
the specified exploration budget by a factor of numInvs!

numInvs!+1 .
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Figure 4: Relative test throughput with respect to LAZ 10–10.

Testing campaigns. For each testing campaign, we use a
budget of 1000 tests. To account for fluctuations in running
time due to randomness in the testing process, we run each
experiment with 5 different random seeds.
Hardware. We run all experiments sequentially (no paral-
lelism) on a machine with a Quadro RTX 8000 GPU and an
Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz.

6.3 Results
RQ1: Test throughput. We compare the test throughput
across NOMOS and all LAZ variants with the default 10–10
setting. Fig. 4a shows their relative throughput with respect to
LAZ on the y-axis and the 32 NOMOS specifications against
which we tested on the x-axis. For each tool variant, the points
in the graph are sorted by throughput; therefore, two points
with the same x-coordinate do not necessarily refer to the same
specification. All points above the y = 1 line exhibit higher
throughput than LAZ (which is better), and all points below
this line have lower throughput.

We observe that LAZ outperforms NOMOS for all but one
specification; LAZ is from 4% to 60% faster for 31 specifica-
tions. For the one specification where NOMOS outperforms
LAZ, NOMOS is 2% faster. Overall, the median throughput
increase of LAZ over NOMOS is 33%. LAZ-NAIVE is from
1% to 10% faster than LAZ for 21 specifications, but from
4% to 46% slower than LAZ for 11 specifications. However,
LAZ-NAIVE already consistently outperforms NOMOS. LAZ-
FLEX is consistently worse than LAZ, showing that always
having the static analysis enabled is more efficient. Simi-
larly, LAZ-FLEX-MAN is almost consistently outperformed
by LAZ-MAN, though the difference between them is under
4%. Besides 2 outliers, LAZ’s throughput is within 10% of
the ideal throughput achieved by LAZ-MAN, which skips the
model invocations using precise, manually crafted conditions
for each specification.
RQ2: Exploration phase. To evaluate the effectiveness
of the exploration phase on the test throughput, we take a

closer look at LAZ-NAIVE and LAZ in Fig. 4a. As mentioned
in RQ1, the exploration phase either significantly improves
throughput (up to 46%), or incurs an overhead (at most 10%).

For 11 out of 32 specifications, LAZ selects the model-
invocation order that already appears in each specification for
all 5 random seeds (and for 6 additional specifications, LAZ
selects this order for some random seeds). Consequently, for
these specifications, LAZ-NAIVE happens to always execute
the best order of model invocations without the overhead of the
exploration phase, which explores all orders. However, if the
order that appears in a specification turns out to be worse, LAZ-
NAIVE uses the more expensive order for the entire testing
campaign, resulting in significantly worse performance.

Overall, LAZ’s exploration phase can significantly increase
throughput for specifications where the original invocation
order is suboptimal. On the other hand, LAZ-NAIVE avoids
the relatively small overhead of the exploration phase in cases
where the specification happens to use the most effective order.

RQ3: Analysis overhead. LAZ calls the static analyzer be-
fore every model invocation (until the first redundant one per
test); this, of course, incurs runtime overhead. Tab. 1 shows
aggregated analysis statistics for each benchmark (i.e., model).
The results are averaged over five testing campaigns (with dif-
ferent random seeds) and all specifications of each benchmark.
In particular, the second and third columns show the num-
ber of skipped model invocations and their percentage over
the total number of invocations. Note that the specifications
for LunarLander and BipedalWalker are 20-safety properties
(the total number of invocations per specification is 20,000
for 1000 tests), whereas all other specifications are 2-safety.
The fourth and fifth columns show the number of analysis
queries and the percentage of cache hits. The last two columns
show the time spent in the static analyzer (in seconds) and the
analysis overhead (in percent) over the total testing time.

Overall, a small number of queries to the analyzer suf-
fices to skip many model invocations as shown in the table
(cf. columns 2 and 4). Recall from Sect. 5 that LAZ caches



Table 1: Analysis statistics per benchmark (i.e., tested model), averaged over 5 campaigns with different random seeds and all specifications.

Benchmark
Skipped Skipped Analysis Cache Analysis Analysis

Invocations Invocations Queries Hits Time Overhead
(in %) (in %) (in secs) (in %)

GermanCredit 684.0 34.2 4.0 99.6 2.34 4.97
COMPAS 534.1 26.7 5.7 99.4 3.06 5.87

MNIST 936.6 46.8 44.8 95.5 20.89 33.37
HotelReview 378.8 18.9 4.0 99.6 2.49 2.87

SpeechCommand 872.8 43.6 16.0 98.4 7.83 16.17
LunarLander 3285.9 16.4 172.5 97.6 44.91 2.99

BipedalWalker 864.4 4.3 33.5 99.7 5.57 0.06

analysis queries as well as their results and can, therefore,
avoid repeatedly posing the same queries to the analyzer. The
cache helps save from 95.5% to 99.7% of the analyzer queries,
significantly improving LAZ’s performance (see column 5).

The number of analysis queries (column 4) depends on two
factors, the number of model invocations for a given specifi-
cation and the diversity of the queries—the more diverse the
queries, the slower the cache is saturated. Queries are, for
instance, more diverse for models with larger ranges of possi-
ble outputs. Consequently, the table shows that more analysis
queries are needed for LunarLander and BipedalWalker, which
have more model invocations than other benchmarks, as well
as for MNIST and SpeechCommand, where the models return
more values than other benchmarks.

A single analysis query takes less than 0.6 seconds, which
is negligible compared to most model invocations. Note that
even when performing a model invocation is faster than per-
forming an analysis query, LAZ-NAIVE still outperforms
NOMOS as the query results are cached and pay off in the
long run. For such models however, we introduce an alterna-
tive exploration phase (LAZ-FLEX) and discuss it in RQ4.

RQ4: Hyperparameter study. In this research question, we
first consider four variants of LAZ that double and halve each
of the explorePt and marginPt parameters, namely, LAZ 5–
10, 10–5, 20–10, and 10–20. Fig. 4b shows their throughput
relative to the default 10–10 setting.

Overall, the throughput differences are small, being less
than 2.5% for most specifications. Both increasing the explo-
ration phase (20–10) and increasing the time margin (10–20)
tend to decrease throughput. When increasing the exploration
phase, more time is spent executing worse configurations.
When increasing the time margin, small, but not insignificant,
throughput differences may not end up being exploited simply
because the number of skipped invocations (our tie breaker
criterion) is slightly higher for the worse invocation orders.

When reducing the exploration phase (5–10) or the time
margin (10–5), the throughput does not change significantly.
A shorter exploration phase can improve throughput if the
selected order is indeed faster. However, these settings may
make the selection of the best invocation order more brittle.
Specifically, there is a higher risk of selecting a worse configu-
ration due to normal fluctuations in running time or the random
selection of model inputs during the exploration phase.

We conclude that the default configuration strikes a good
balance across the vast majority of specifications for different

benchmarks. In addition, our approach appears to be robust
with respect to different hyperparameter settings.

Next, we also evaluate these different settings for LAZ-
FLEX, the variant of LAZ that includes an additional configu-
ration in the exploration phase for disabling the static analysis.
As shown in Fig. 4b, LAZ-FLEX performs worse than LAZ
for all settings. We observed that LAZ-FLEX often chooses
to disable the analysis after the exploration, which suggests
that the exploration phase is too short to amortize the cost of
running the analysis. In fact, for LAZ-FLEX, the variant with
the longest exploration phase (20–10) achieves the highest
throughput as it chooses to enable the analysis 1.5x more often
than 10–10 and 3x more often than 5–10.

7 Related Work
In the last few years, it has been observed that hyperprop-
erties are useful in specifying a wide range of ML mod-
els (e.g., [Seshia et al., 2018; Sharma and Wehrheim, 2020;
Christakis et al., 2023; Fluri et al., 2024]). NOMOS [Christakis
et al., 2023], in particular, provides a specification language
for expressing such properties.

Beyond specifications, there is a large amount of work on
testing specific hyperproperties, such as robustness [Tian et al.,
2018; Zhang et al., 2018; Zhou and Sun, 2019; He et al., 2020],
fairness [Galhotra et al., 2017; Udeshi et al., 2018; Tramèr et
al., 2017], and monotonicity [Sharma and Wehrheim, 2020;
Deng et al., 2021; Deng et al., 2022]. Recently, more general
hyperproperties have been tested in diverse domains, e.g.,
where ground truth is expensive to obtain or simply beyond
human knowledge [Christakis et al., 2023; Fluri et al., 2024].

Static analysis has been used to improve testing in other
domains, e.g., for regular software [Christakis et al., 2016;
Ferles et al., 2017] or smart contracts [Wüstholz and Chris-
takis, 2020]. Inspired by these, LAZ improves the perfor-
mance of NOMOS by using static analysis to skip redundant
and expensive ML model invocations. In theory, LAZ could
complement any hyperproperty-testing technique.

8 Conclusion
We presented LAZ, a novel approach for lazy testing of ML
models that automatically identifies redundant and expensive
model invocations and skips them. LAZ increases test through-
put by median 33% compared to NOMOS, a state-of-the-art
testing framework for ML models, and skips up to 47% model
invocations with only a few analysis queries.
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Valentin Wüstholz. Guiding dynamic symbolic execution
toward unverified program executions. In ICSE, pages
144–155. ACM, 2016.

[Christakis et al., 2023] Maria Christakis, Hasan Ferit Eniser,
Jörg Hoffmann, Adish Singla, and Valentin Wüstholz. Spec-
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