
Targeted Greybox Fuzzing
with Static Lookahead Analysis

Valentin Wüstholz

ConsenSys Diligence/MythX, Germany

valentin.wustholz@consensys.net

Maria Christakis

MPI-SWS, Germany

maria@mpi-sws.org

ABSTRACT
Automatic test generation typically aims to generate inputs that

explore new paths in the program under test in order to find bugs.

Existing work has, therefore, focused on guiding the exploration

toward program parts that are more likely to contain bugs by using

an offline static analysis.

In this paper, we introduce a novel technique for targeted greybox

fuzzing using an online static analysis that guides the fuzzer toward
a set of target locations, for instance, located in recently modified

parts of the program. This is achieved by first semantically analyz-

ing each program path that is explored by an input in the fuzzer’s

test suite. The results of this analysis are then used to control the

fuzzer’s specialized power schedule, which determines how often to

fuzz inputs from the test suite.We implemented our technique by ex-

tending a state-of-the-art, industrial fuzzer for Ethereum smart con-

tracts and evaluate its effectiveness on 27 real-world benchmarks.

Using an online analysis is particularly suitable for the domain of

smart contracts since it does not require any code instrumentation—

adding instrumentation to contracts changes their semantics. Our

experiments show that targeted fuzzing significantly outperforms

standard greybox fuzzing for reaching 83% of the challenging target

locations (up to 14x of median speed-up).

ACM Reference Format:
Valentin Wüstholz and Maria Christakis. 2020. Targeted Greybox Fuzzing

with Static Lookahead Analysis. In 42nd International Conference on Software
Engineering (ICSE ’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3377811.3380388

1 INTRODUCTION
Automatic test generation is known to help find bugs and secu-

rity vulnerabilities, and therefore, improve software quality. As a

result, there has emerged a wide variety of test-generation tools

that implement techniques such as random testing [24, 28, 67] and

blackbox fuzzing [5, 8], greybox fuzzing [3, 6] as well as dynamic

symbolic execution [18, 40] and whitebox fuzzing [17, 37, 41].

These techniques differ from each other in how much of the

program structure they take into account. In general, the more

structure a testing tool may leverage, the more effective it becomes

in discovering new paths, but the less efficient it is in generating

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00

https://doi.org/10.1145/3377811.3380388

new inputs. For example, greybox fuzzing lies in the middle of

this spectrum between performance and effectiveness in increasing

coverage. In particular, it uses lightweight runtime monitoring that

makes it possible to distinguish different paths, but it may not access

any additional information about the program under test.

What these techniques have in common is that, just like any

(static or dynamic) path-based program analysis, they can usually

only explore a subset of all feasible paths in a program under test;

for instance, in the presence of input-dependent loops. For this

reason, path-based program analyses are typically not able to prove

the absence of errors in a program, only their existence.

To make bug detection more effective, existing work has focused

on guiding the exploration toward warnings reported by a static

analysis (e.g., [29, 30, 38]), unverified program executions (e.g., [23,

35]), or sets of dangerous program locations (e.g., [14]). This is often

achieved with an offline static analysis whose results are recorded

and used to prune parts of the search space that is then explored

by test generation.

The offline static analysis may be semantic, e.g., based on abstract

interpretation, or not, e.g., based on the program text or its control-

flow graph. A semantic analysis must consider all possible program

inputs and states in which a piece of code may be executed. As a

result, the analysis can quickly become imprecise, thus impeding

its purpose of pruning as much of the search space as possible. For

better results, one could resort to a more precise analysis, which

would be less efficient, or to a more unsound analysis. The latter

would limit the number of considered execution states in order to

increase precision, but may also prune paths that are unsoundly

verified [58].

Our approach. In this paper, we present a technique that seman-
tically guides greybox fuzzing toward target locations, for instance,
locations reported by another analysis or located in recently mod-

ified parts of the program. This is achieved with an online static
analysis. In particular, the fuzzer invokes this online analysis right

before adding a new input to its test suite. For the program path π
that the new input explores (see bold path in Fig. 1), the goal of the

analysis is to determine a path prefix πpre for which all suffix paths

are unable to reach a target location (e.g., Tx and Ty in Fig. 1). This

additional information allows the fuzzer to allocate its resources

more strategically such that more effort is spent on exercising pro-

gram paths that might reach the target locations, thereby enabling

targeted fuzzing. More precisely, this information feeds into a spe-

cialized power schedule of the fuzzer that determines how often to

fuzz an input from the test suite.

We refer to our online static analysis as a lookahead analysis
since, given a path prefix πpre , it looks for reachable target locations
along all suffix paths (sub-tree rooted at Pi in Fig. 1). We call the last

program location of prefix πpre a split point (Pi in Fig. 1). Unlike a

1

https://doi.org/10.1145/3377811.3380388
https://doi.org/10.1145/3377811.3380388

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Valentin Wüstholz and Maria Christakis

P1

Pi−1

Pi

Ty

Tx

πpre

Figure 1: Execution tree of a program containing target lo-
cations Tx and Ty . The lookahead analysis analyzes a path
π (bold) to identify a prefix πpre such that no suffix paths
reach a target location.

traditional static analysis, the lookahead analysis does not consider

all possible execution states at the split point when analyzing all

suffix paths—only the ones that are feasible along πpre . In other

words, the lookahead analysis combines the precision of a path-

sensitive analysis along a feasible path prefix with the scalability

of a path-insensitive suffix analysis. Intuitively, for a given path

π , the precision of the lookahead analysis is determined by the

number of suffix paths that are proved not to reach any target

locations. Therefore, to optimize precision, the analysis tries to

identify the first split point (Pi in Fig. 1) along π such that all targets

are unreachable. Note that the lookahead analysis may consider

any program location along π as a split point.

When combining greybox fuzzing with an online lookahead

analysis, we faced four main challenges, which we address in this

paper. In particular, we provide answers to the following questions:

(1) How can the lookahead analysis effectively communicate its

results to the fuzzer? (2) How lightweight can the analysis be to

improve the effectiveness of the fuzzer in reaching target locations

without having a negative impact on its performance? (3) How can

the analysis be invoked from a certain split point along a path?

(4) What are suitable split points for invoking the analysis to check

all suffix paths?

Our implementation uses Harvey, a state-of-the-art, industrial

greybox fuzzer for Ethereum smart contracts [79], which are pro-

grams managing crypto-currency accounts on a blockchain. We

extended Harvey to incorporate Bran, a new static-analysis frame-

work for smart contracts. A main reason for targeting the domain

of smart contracts is that adding code instrumentation to contracts

changes their semantics, and all existing techniques that use an

offline static analysis rely on instrumenting the program under test.

Our experiments on 27 benchmarks show that targeted fuzzing sig-

nificantly outperforms standard greybox fuzzing for reaching 83%

of the challenging target locations (up to 14x of median speed-up).

Contributions.We make the following contributions:

– We introduce a greybox-fuzzing algorithm that uses a light-

weight, online static analysis and a specialized power sched-

ule to guide the exploration toward target locations.

– We implement this fuzzing algorithm by extending the Har-

vey greybox fuzzer with Bran, a static analysis for smart

contracts.

– We evaluate our technique on 27 real-world benchmarks and

demonstrate that our lookahead analysis and power schedule

significantly increase the effectiveness of greybox fuzzing in

reaching target locations.

Outline. The next section provides background on greybox

fuzzing and smart contracts. In Sect. 3, we give an overview of

our technique through an example. Sect. 4 explains the technical

details, and Sect. 5 describes our implementation. We present our

experimental evaluation in Sect. 6, discuss related work in Sect. 7,

and conclude in Sect. 8.

2 BACKGROUND
In this section, we review background on greybox fuzzing and smart

contracts.

2.1 Greybox Fuzzing
Greybox fuzzing [3, 6] is a practical test-generation technique that

has been shown to be very effective in detecting bugs and security

vulnerabilities (e.g., [1]). Alg. 1 shows exactly how it works. (The

grey boxes should be ignored.)

A greybox fuzzer takes as input the program under test prog
and a set of seed inputs S . The fuzzer runs the program with the

seeds (line 1) and associates each input with the unique identifier

of the path it exercises, or PID. The PIDs data structure, therefore,
represents a map from a PID to the corresponding input. Note that

a path identifier is computed with lightweight runtime monitoring

that allows the fuzzer to distinguish different program paths.

Next, the fuzzer selects an input from PIDs for mutation (line 3),

which is typically performed randomly. This input is assigned an

“energy” value, which indicates how long it should be fuzzed (line 5).

The input is then mutated (line 8), and the program is run again

with this new input (line 9). If the new input exercises a path that

has not been seen before, it is added to PIDs with the corresponding

path identifier (lines 10, 12).

This process terminates when a bound is reached, such as a time-

out or a number of generated inputs (line 2). When that happens,

the fuzzer returns a test suite comprising all inputs in PIDs, each
exercising a different path in the program.

2.2 Smart Contracts
Ethereum [9] is one of the most well known blockchain-based [69,

72] computing platforms. Like a bank, Ethereum supports accounts

that store a balance (in digital assets) and are owned by a user. More

specifically, there is support for two account types, namely user

and contract accounts.

2

Targeted Greybox Fuzzing with Static Lookahead Analysis ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Contract accounts are not managed by a user, but instead by a

program. The program associated with a certain contract account

describes an agreement between the account and any users that

interact with it. For example, such a program could encode the

rules of a gambling game. To store information, such as bets from

various users, a contract account also comes with persistent state

that the program may access and modify.

A contract account together with its managing program and per-

sistent state is called a smart contract. However, the term may also

refer to the code alone. Ethereum smart contracts can be developed

in several high-level languages, such as Solidity and Vyper, which

compile to Ethereum Virtual Machine (EVM) [78] bytecode.

Users interact with a smart contract, for instance to place a bet, by

issuing a transaction with the contract. The transaction simply calls

one of the contract functions, but in order to be carried out, users

need to provide a fee. This fee is called gas and is approximately

proportional to how much code needs to run. Any transaction that

runs out of gas is aborted.

3 OVERVIEW
We now give an overview of our approach through the example of

Fig. 2.

Example. The figure shows a constructed function Bar , which
is written in Solidity and contained in a smart contract. (The com-

ments should be ignored for now.) There are three assertions in this

function, on lines 14, 19, and 22. A compiler will typically introduce

a conditional jump for each assertion, where one branch leads to a

location that fails. Let us assume that we select the failing locations

(t14, t19 , and t22) of the three assertions as our target locations.

Note that any target locations could be (automatically) selected

based on various strategies, e.g., recently modified code (for smart

contracts under development), assertions (added manually or by

the compiler for checked errors such as division by zero), etc. Out

of the above locations, t14 and t19 are unreachable, whereas t22 is
reachable when input parameter a has value 42.

Generating a test input that reaches location t22 is difficult for a

greybox fuzzer (and equally so for blackbox fuzzers) for two reasons.

First, the probability of generating value 42 for parameter a is tiny,

namely 1 out of 2
256

. This means that, for the fuzzer to increase the

chances of reaching t22, it would need to fuzz certain “promising”

inputs with a large amount of energy. However, standard greybox

fuzzers are agnostic to what constitutes a promising input that is

more likely to reach a target location when mutated.

Second, there are more than 100’000 program paths in function

Bar . In fact, the then-branch of the first if-statement (line 5) con-

tains two input-dependent loops (lines 11 and 16), whose number

of iterations depends on parameters w and z, respectively. Recall
that a greybox fuzzer generates new inputs by mutating existing

ones from the test suite. Therefore, the larger the size of the test

suite, the larger the space of possible mutations, and the lower the

chances of generating an input that reaches the target location.

Existing work. As discussed earlier, there is existing work that

leverages the results of an offline static analysis to guide automatic

test generation toward unverified executions (e.g., [23, 29, 30, 35,

38]). To apply such a technique on the example of Fig. 2, let us

assume a very lightweight static analysis that is based on abstract

1 function Bar(uint256 w, uint256 x, uint256 y,

2 uint256 z, uint256 a) returns (uint256)

3 {

4 uint256 ret = 0;

5 if (x % 2 == 0) { // if (x % 1000 != 42) {

6 ret = 256;

7 if (y % 2 == 0) {

8 ret = 257;

9 }

10 w = w % ret;

11 while (w != 0) {

12 w--;

13 }

14 assert(w == 0); // drop this line

15 z = z % ret;

16 while (ret != z) {

17 z++;

18 }

19 assert(ret == z); // assert(x != 42 - w*z);

20 } else {

21 ret = 3*a*a + 7*a + 101;

22 assert(ret != 5687);

23 }

24 return ret;

25 }

Figure 2: The running example.

interpretation [26, 27] and uses the simple constant-propagation

domain [49]. Note that, for each program variable, the constant-

propagation domain can only infer a single constant value. When

run offline, this analysis is able to prove that target location t14 is
unreachable. This is because, after the loop on line 11, the analysis

assumes the negation of the loop condition (that is, w == 0), which
is equivalent to the asserted condition.

However, the analysis cannot prove that location t19 is also un-

reachable. This is because, after the if-statement on line 7, variable

ret has abstract value ⊤. In other words, the analysis finds ret
to be unconstrained since the constant-propagation domain is not

able to express that its value is either 256 or 257. Given that ret is

⊤, z remains⊤ after the loop on line 16. It is, therefore, not possible

for the analysis to determine whether these two variables always

have the same value on line 19 and verify the assertion. As a result,

automatic test generation needs to explore function Bar as if no

static analysis had previously run. To check whether the assertion

on line 19 always holds, a testing tool would have to generate inputs

for all paths leading to it, thus including each iteration of the loop

on line 11.

On the other hand, an existing technique for directed greybox

fuzzing [14] performs lightweight instrumentation of the program

under test to extract a distance metric for each input, which is then

used as feedback for the fuzzer. So, the instrumentation encodes a

static metric that measures the distance between the instrumented

and the target locations in the control-flow graph. In our example,

such metrics are less effective since all instructions are relatively

close to the target locations, and the control-flow graph alone is not

precise enough to determine more semantic reachability conditions.

3

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Valentin Wüstholz and Maria Christakis

In addition, when directly fuzzing bytecode or assembly, a control-

flow graph might not be easily recoverable, for instance due to

indirect jumps.

Lookahead analysis. In contrast, our approach alleviates the

imprecision of a static analysis by running it online and does not

require an explicit, complete control-flow graph. Our greybox fuzzer

invokes the lookahead analysis for each input that is added to the

test suite. Starting from split points (e.g., P1, Pi−1, and Pi in Fig. 1)

along an explored program path, the analysis computes a path prefix

(πpre) for which all suffix paths do not reach any target location

(e.g., Tx and Ty). We refer to such a path prefix as a no-target-
ahead prefix (see Def. 2 for more details). As we explain below, the

lookahead analysis aims to identify short no-target-ahead prefixes.

As an example, let us consider the constant-propagation analysis

and an input for function Bar with an even value for x (thusmaking

execution take the then-branch of the first if-statement on line 5).

Along the path exercised by this input, the analysis fails to show

that both target locations t14 and t19 are unreachable for the suffix

paths starting from line 7. In fact, the analysis is as imprecise as

when run offline on the entire function. However, it does verify the

unreachability of the target locations for all suffix paths from line 9

by propagating forward the constant value of variable ret (i.e.,

257 for an even y, and 256 otherwise). Out of the many paths with

an even value for x, the two no-target-ahead prefixes until line 9

(through the then- and else-branches of the if-statement on line 7)

are actually the shortest ones for which the lookahead analysis

proves that target locations t14 and t19 are unreachable.
Power schedule. The no-target-ahead prefixes computed by

the lookahead analysis are used to control the fuzzer’s power sched-

ule [15], which assigns more energy to certain inputs according to

two criteria.

First, it assigns more energy to inputs that exercise a rare (i.e.,

rarely explored) no-target-ahead prefix. The intuition is to fuzz

these inputs more in order to increase the chances of flipping a

branch along the rare prefix, and thereby, reaching a target loca-

tion. Note that flipping a branch in a suffix path can never lead to a

target location. For this reason, our power schedule no longer distin-

guishes inputs based on the program path they exercise, but rather

based on their no-target-ahead prefix. To maximize the chances of

discovering a target location with fuzzing, the lookahead analysis

tries to identify the shortest no-target-ahead prefixes, which are

shared by the most suffix paths.

For the example of Fig. 2, consider the two no-target-ahead

prefixes (until line 9) that we discussed above. Consider also the

no-target-ahead prefix until the successful branch of the assertion

on line 22. The inputs that exercise these prefixes are dynamically

assigned roughly the same energy by our schedule—if one of them is

exercised more rarely than the others, it is given more energy. This

makes reaching target location t22 significantly more likely than

with standard power schedules based on path identifiers, which

assign roughly the same energy to each input exercising one of the

thousands of paths in Bar .
Second, our power schedule also assigns more energy to inputs

exercising rare split points in a no-target-ahead prefix, similarly

to how existing work assigns more energy to rare branches [54].

The intuition is the following. Any newly discovered no-target-

ahead prefix is by definition rare—it has not been fuzzed before.

Since it is rare, the power schedule will assign more energy to

it, as discussed above. However, there are programs where new

no-target-ahead prefixes can be easily discovered, for instance due

to an input-dependent loop. In such cases, a power schedule only

focusing on rare prefixes would prioritize these new prefixes at the

expense of older ones that explore rare program locations, such as

split points. For this reason, when a split point in a no-target-ahead

prefix becomes rare, the power schedule tries to explore it more

often.

As an example, consider the code in Fig. 2 while taking the

comments into account, that is, replace lines 5 and 19 with the

comments and drop line 14. The assertion on line 19 holds, but the

constant-propagation analysis is too weak to prove it. As a result,

for any path through this assertion, its no-target-ahead prefix has

to include line 19. However, new no-target-ahead prefixes are very

easily discovered; for instance, by exploring a different number of

iterations in any of the two loops. So, even if at some point the

fuzzer discovers the path that successfully exercises the assertion

on line 22, its no-target-ahead prefix will quickly become less rare

than any new prefixes going through the loops. The corresponding

input will, therefore, be fuzzed less often even though it is very

close to revealing the assertion violation. By prioritizing rare split

points, for instance line 21, our power schedule will assign more

energy to that input. This increases the chances of mutating the

value of a to be 42 and reaching target t22.
Both of these criteria effectively guide the fuzzer toward the tar-

get locations. For Fig. 2, our technique generates a test that reaches

t22 in 27s on average (between 13 and 48s in 5 runs). Standard grey-

box fuzzing does not reach t22 in 4 out of 5 runs, with a timeout of

300s. The target location is reached in 113s during a fifth run, so in

263s on average. For this example, our technique achieves at least

a 10x speed-up.

Why smart contracts. While our approach could in princi-

ple be applied to regular programs, it is particularly useful in the

context of smart contracts. One reason is that, in this setting, com-

bining an offline static analysis with test generation using code

instrumentation would change the program semantics. Recall that a

transaction with a smart contract is carried out when users provide

enough gas, which is roughly proportional to how many instruc-

tions are run. Since instrumentation consumes gas at execution

time, it could cause a test-generation tool to report spurious out-

of-gas errors. Note that Harvey, the fuzzer we use in this work,

does not instrument the program to collect path identifiers, but

relies on call-backs from the virtual machine. Another reason for

targeting smart contracts is that most deployed contracts are only

available as bytecode, and recovering the control-flow graph from

the bytecode is challenging.

4 TECHNIQUE
In this section, we describe our technique in detail by first formally

defining a lookahead analysis (Sect. 4.1). We then discuss how

to integrate such an analysis with greybox fuzzing to enable a

more targeted exploration of the search space (Sect. 4.2). Lastly,

we present a concrete algorithm for a lookahead analysis based on

abstract interpretation.

4

Targeted Greybox Fuzzing with Static Lookahead Analysis ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

4.1 Lookahead Analysis
Let us first define a prefix and a no-target-ahead prefix of a given

path.

Definition 1 (Prefix). Given a program P and a path π in P , we say
that πpre is a prefix of π iff there exists a path ρ (which we call

suffix) such that π = concat(πpre, ρ).

Note that, in the above definition, ρ may be empty, in which case

π = πpre .

Definition 2 (No-target-ahead prefix). Given a program P , target
locationsT , and a prefix πpre of a path in P , we say that πpre is a no-
target-ahead prefix iff the suffix ρ of every path π = concat(πpre, ρ)
in P does not contain a target location τ ∈ T .

Note that any path π in a program P is trivially a no-target-ahead

prefix since there cannot be any target locations after reaching the

end of its execution.

For a given no-target-ahead prefix, the analysis computes a looka-
head identifier (LID) that will later be used to guide the fuzzer.

Definition 3 (Lookahead identifier). Given a no-target-ahead pre-

fix πpre , the lookahead identifier λ is a cryptographic hash hash(πpre).

The above definition ensures that it is very unlikely that two

different no-target-ahead prefixes map to the same LID.
Unlike a path identifier (PID) in standard greybox fuzzing, which

is computed purely syntactically, a LID captures a no-target-ahead

prefix, which is computed by semantically analyzing a programpath.

As a result, two program paths with different PIDs may share the

same LID. In other words, lookahead identifiers define equivalence

classes of paths that share the same no-target-ahead prefix.

Definition 4 (Lookahead analysis). Given a program P , an input

I , and a set of target locations T , a lookahead analysis computes a

lookahead identifier λ for the corresponding no-target-ahead prefix

πpre (of path π exercised by input I) and a set of split points SPs
along πpre .

Note that a lookahead analysis that simply returns the hash of

path π exercised by input I and all locations along π is trivially

sound, but typically imprecise. For a given input, the precision of

the analysis is determined by the length of the no-target-ahead

prefix, and thereby, the number of suffix paths that are proved

not to contain any target locations. In other words, the shorter

the no-target-ahead prefix for a given input, the more precise the

lookahead analysis.

4.2 Fuzzing with Lookahead Analysis
The integration of greybox fuzzing with a lookahead analysis builds

on the following core idea. For each input in the test suite, the looka-

head analysis determines a set of split points, that is, program loca-

tions along the explored path. It then computes a no-target-ahead

prefix, which spans until one of these split points and is identified

by a lookahead identifier. The fuzzer uses the rarity of the looka-

head identifier as well as of the split points that are located along

the no-target-ahead prefix to assign energy to the corresponding

input.

The grey boxes in Alg. 1 highlight the key extensions we made

to standard greybox fuzzing. For one, our algorithm invokes the

Algorithm 1: Greybox fuzzing with lookahead analysis.
Input: Program prog, Seeds S , Target locations T
1 PIDs← RunSeeds(S , prog)
2 while ¬Interrupted() do
3 input ← PickInput(PIDs)
4 energy← 0

5 maxEnergy← AssignEnergy(input)
6 maxEnergy← LookaheadAssignEnergy(input)
7 while energy < maxEnergy do
8 input′← FuzzInput(input)
9 PID′← Run(input′, prog)
10 if IsNew(PID′, PIDs) then
11 LID, SPs← LookaheadAnalyze(prog, input′,T)
12 PIDs← Add(PID′, input′, LID, SPs, PIDs)
13 energy← energy + 1

Output: Test suite Inputs(PIDs)

lookahead analysis on line 11. This is done for every new input that

is added to the test suite and computes the LID of the no-target-

ahead prefix as well as the split points SPs along the prefix. Both are

stored in the PIDs data structure for efficient lookups (e.g., when

assigning energy).

We also replace the existing power schedule on line 5 with a

specialized one given by LookaheadAssignEnergy (line 6). As

discussed in Sect. 3, our power schedule assigns more energy to

inputs that exercise either a rare LID or a rare split point along a

no-target-ahead prefix. We define the new power schedule in the

following.

Definition 5 (Rare LID). Given a test suite with LIDs Λ, a LID λ is

rare iff

fuzz(λ) < rarity_cutoff ,

where fuzz(λ)measures the number of fuzzed inputs that exercised

λ so far and rarity_cutoff = 2
i
such that

2
i−1 < min

λ′∈Λ
fuzz(λ′) ≤ 2

i .

For example, if the LID with the fewest fuzzed inputs has been

explored 42 times, then any LID that has been explored less than

2
6
times is rare.

The above definition is inspired by an existing power schedule

for targeting rare branches [54] that introduced such a dynamically

adjusted rarity_cutoff . Their experience shows that this metric

performs better than simply considering the n LIDs with the lowest

number of fuzzed inputs as rare.

Definition 6 (Rare split point). Given a test suite with split points

SPs along the no-target-ahead prefixes, a split point p is rare iff

fuzz(p) < rarity_cutoff ,

where fuzz(p)measures the number of fuzzed inputs that exercised

p so far and rarity_cutoff = 2
i
such that

2
i−1 < min

p′∈SPs
fuzz(p′) ≤ 2

i .

Power schedule. Our power schedule is defined as follows for

an input I with LID λ and split points SPs along the no-target-ahead
5

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Valentin Wüstholz and Maria Christakis

Algorithm 2: Lookahead algorithm.
Input: Program prog, Input input, Target locations T
1 π ← Run(input, prog)
2 i← 0

3 SPs← ∅
4 while i < |π | do
5 if IsSplitPoint(i, π) then
6 πpre ← π [0..i + 1]
7 SPs← SPs ∪ {π [i]}
8 ϕ, loc← PrefixInference(πpre)
9 if AreTargetsUnreachable(prog, loc, ϕ,T) then
10 return ComputeHash(πpre), SPs

11 i← i + 1
12 return ComputeHash(π), SPs

Output: Lookahead identifier λ, Split points SPs

prefix:{
min(2selected (I),K), if λ is rare ∨ ∃p ∈ SPs · p is rare

1, otherwise.

In the above definition, selected(I) denotes the number of times that

I was selected for fuzzing (line 3 in Alg. 1), andK is a constant (1024

in our implementation). Intuitively, our power schedule assigns

little energy to inputs whose LID is not rare and whose no-target-

ahead prefix does not contain any rare split points. Otherwise, it

assigns much more energy, the amount of which depends on how

often the input has been selected for fuzzing before. The energy

grows exponentially up to some bound K , similarly to the cut-off-

exponential schedule in AFLFast [15].

4.3 Lookahead Algorithm
Alg. 2 shows the algorithm for the lookahead analysis, which is

implemented in function LookaheadAnalyze from Alg. 1 and uses

abstract interpretation [26, 27].

First, the lookahead analysis executes the program input con-

cretely to collect the exercised path π (line 1 in Alg. 2). Given path π ,
it searches for the shortest no-target-ahead prefix πpre by iterating

over possible split points p (lines 4–11). Let us explain these lines

in detail.

On line 5, the algorithm calls a predicate IsSplitPoint, which is

parametric in which locations constitute split points. All locations

along π could be split points, but to narrow down the search, the

implementation may consider only a subset of them, for instance,

at conditional jumps.

At each split point, the analysis performs two separate steps:

(1) prefix inference and (2) suffix checking. The prefix inference

(line 8) statically analyzes the prefix πpre using abstract interpreta-

tion to infer its postcondition ϕ. This step essentially executes the

prefix in the abstract for all possible inputs that exercise this path.

Given condition ϕ, the analysis then performs the suffix check-

ing to determine if all target locations are unreachable (line 9).

This analysis performs standard, forward abstract interpretation by

computing a fixed-point. If all target locations are unreachable, the

analysis terminates and returns a non-empty LID by computing a

hash over the program locations along the path prefix πpre (line 10).
This ensures that the analysis returns as soon as it reaches the

first split point for which all targets are unreachable. In addition, it

returns the set of all split points along prefix πpre .
Even though off-the-shelf abstract interpreters are not designed

to perform prefix inference and suffix checking, it is relatively

straightforward to extend them. Essentially, when invoking a stan-

dard abstract interpreter on a program, the path prefix is always

empty, whereas our lookahead analysis is partially path-sensitive

(i.e., for the prefix, but not the suffix). Due to this partial path-

sensitivity, even an inexpensive abstract domain (e.g., constant

propagation or intervals) might be able to prove unreachability of

a certain target location, which would otherwise require a more

precise domain (for an empty prefix).

Split points. In practice, it is important to choose split points

with care since too many split points will have a negative impact on

the performance of the lookahead analysis. In our implementation,

we only consider split points when entering a basic block for the first

time along a given path. The intuition is that the lookahead analysis

should run every time “new code” is discovered. Our experiments

show that this design decision results in negligible overhead.

Calls. To keep the lookahead analysis lightweight, we analyze

calls modularly. More specifically, any calls to other contracts are

conservatively treated as potentially leading to target locations.

Note that inter-contract calls are used very sparingly in smart

contracts and that intra-contract calls are simply jumps.

5 IMPLEMENTATION
Our implementation extends Harvey [79]. It is actively used at one

of the largest blockchain-security consulting companies
1
both for

smart-contract audits and as part of an automated smart-contract

analysis service
2
(more than 2.9M analyzed contracts from March

to December 2019). For our purposes, we integrated Harvey with

Bran, our new abstract-interpretation framework for EVM byte-

code, which is open source
3
.

Bran is designed to be scalable by performing a very lightweight,

modular analysis that checks functional-correctness properties. Un-

like other static analyzers for EVM bytecode (e.g., Securify [74] and

MadMax [43]), Bran runs directly on the bytecode without having

to reconstruct the control-flow graph or decompile to an inter-

mediate language. Bran is equipped with a constant-propagation

domain [49], which is commonly used in compiler optimizations. It

handles all opcodes and integrates the go-ethereum virtual machine

to concretely execute any opcodes with all-constant arguments.

Prefix length. During our preliminary experiments with the in-

tegration of Harvey and Bran, we observed that the prefix length

may become quite large, for instance in the presence of input-

dependent loops. However, the running time of the lookahead anal-

ysis is proportional to the prefix length, and our goal is to keep

the analysis as lightweight as possible. For this reason, our imple-

mentation ignores any split points after the first 8’192 bytecode

locations of the prefix. Note that this design decision does not affect

the soundness of the lookahead analysis; it only reduces the search

space of prefixes and might result in considering the entire path as

the no-target-ahead prefix.

1
https://consensys.net

2
https://mythx.io

3
https://github.com/Practical-Formal-Methods/bran

6

https://consensys.net
https://mythx.io
https://github.com/Practical-Formal-Methods/bran

Targeted Greybox Fuzzing with Static Lookahead Analysis ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

6 EXPERIMENTAL EVALUATION
We now evaluate our technique on real-world Ethereum smart

contracts. First, we discuss the benchmark selection (Sect. 6.1) and

describe our experimental setup (Sect. 6.2). We then evaluate the

effectiveness of the static lookahead analysis in greybox fuzzing

(Sect. 6.3) and identify potential threats to the validity of our exper-

iments (Sect. 6.4).

6.1 Benchmark Selection
We evaluated our technique on a total of 27 smart contracts, which

originate from 17 GitHub repositories. Tab. 1 gives an overview.

The first column lists a benchmark identifier for each smart con-

tract under test, while the second and last columns provide the

name and description of the containing project. Note that a reposi-

tory may contain more than one contract, for instance including

libraries; from each repository, we selected one or more contracts

for our evaluation. The third and fourth columns of the table show

the number of public functions and lines of Solidity code in the

benchmarks. (We provide links to all repositories as well as the

changesets used for our experiments in a technical report [80].)

It is important to note that the majority of smart contracts are

under 1’000 lines of code. Still, contracts of this size are complex

programs, and each of them might take several weeks to audit.

However, as it becomes clear from the example of Fig. 2, code size

is not necessarily proportional to the number of feasible program

paths or the difficulty to reach a particular target location with

greybox fuzzing.

The repositories were selected with the goal of ensuring a di-

verse set of benchmarks. In particular, they include popular projects,

such as the ENS domain name auction, the ConsenSys multisig

wallet, and the MicroRaiden payment service. In addition to be-

ing widely known in the Ethereum community, these projects are

highly starred on GitHub (5’136 stars in total on 2019-12-30, median

140), have been independently audited, and regularly transfer large

amounts of assets. Moreover, our selection includes contracts from

various application domains (like auctions, wallets, and tokens),

attacked contracts (namely, The DAO and Parity wallet) as well

as contracts submitted to the first Underhanded Solidity Coding

Contest (USCC) [7]. Entries in this contest aim to conceal subtle

vulnerabilities.

For selecting these repositories, we followed guidelines on how

to evaluate fuzzers [51]. We do not randomly collect smart contracts

from the Ethereum blockchain since this would likely contaminate

our benchmarks with duplicates or bad-quality contracts—that is,

contracts without users, assets, or dependencies, for instance, on

libraries or other contracts.

6.2 Experimental Setup
Our experiments compare the integration of Harvey and Bran

(incl. three variants) with Harvey alone to evaluate the effective-

ness of targeted fuzzing. The comparison focuses on the time it

takes for each configuration to cover a set of target locations. Har-

vey is the only greybox fuzzer for smart contracts, and there are

no existing targeted black- or whitebox fuzzers for smart contracts.

Implementing a targeted whitebox approach purely for comparison

(for instance, based on symbolic execution such as Katch [63]) is

BIDs Name Functions LoSC Description
1 ENS 24 1205 ENS domain name auction

2–3 CMSW 49 503 ConsenSys multisig wallet

4–5 GMSW 49 704 Gnosis multisig wallet

6 BAT 23 191 BAT token (advertising)

7 CT 12 200 ConsenSys token library

8 ERCF 19 747 ERC Fund (investment fund)

9 FBT 34 385 FirstBlood token (e-sports)

10–13 HPN 173 3065 Havven payment network

14 MR 25 1053 MicroRaiden payment service

15 MT 38 437 MOD token (supply-chain)

16 PC 7 69 Payment channel

17–18 RNTS 49 749 Request Network token sale

19 DAO 23 783 The DAO organization

20 VT 18 242 Valid token (personal data)

21 USCC1 4 57 USCC’17 entry

22 USCC2 14 89 USCC’17 (honorable mention)

23 USCC3 21 535 USCC’17 (3rd place)

24 USCC4 7 164 USCC’17 (1st place)

25 USCC5 10 188 USCC’17 (2nd place)

26 PW 19 549 Parity multisig wallet

27 BNK 44 649 Bankera token

Total 662 12564

Table 1: Overview of benchmarks. The first column lists
a benchmark identifier for each smart contract under test,
while the second and last columns provide the name and
description of the containing project. The third and fourth
columns provide the number of public functions and lines
of source code in the benchmarks.

beyond the scope of this paper. Existing work [14] already provides

a detailed comparison showing how targeted grey- and whitebox

approaches complement each other.

Targets. We randomly selected up to four target locations for

each benchmark to avoid bias (e.g., by only targeting assertions or

recently modified code). In particular, we picked contract locations

of varying difficulty to reach, based on when they were first discov-

ered during a 1h standard greybox-fuzzing run. So, we randomly

picked at most one newly discovered location, if one existed, from

each of the following time brackets in this order: 30–60m, 15–30m,

7.5–15m, 3.75–7.5m, and 1.875–3.75m. This ensures that all targets

are reachable. Consequently, for a given prefix, any unreachable

targets are proved so by the constant-propagation domain. This

is possible mainly due to the path sensitivity provided by the pre-

fix inference, which strengthens the capabilities of the imprecise

constant-propagation domain during suffix checking.

Runs. We performed 24 runs of each configuration on the 27

benchmarks of Tab. 1. For each run, we used a different random

seed, the same seed input, and a time limit of 1h (i.e., 3’600s). In

our results, we report medians and use Wilcoxon-Mann-Whitney U

tests to determine if differences in medians between configurations

are statistically significant.

Machine. We used an Intel® Xeon® CPU @ 2.67GHz 24-core

machine with 50GB of memory running Debian 9.5.

6.3 Results
We now evaluate the effectiveness of our technique by investigating

five research questions.

7

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Valentin Wüstholz and Maria Christakis

RQ1: Effectiveness of targeted fuzzing. Tab. 2 compares our

baseline configuration A, which does not enable the static looka-

head analysis, with configuration B, which does. Note that configu-

rationA uses the cut-off-exponential power schedule of AFLFast [15],

whereas B uses our specialized schedule. The first two columns of

the table indicate the benchmark and target IDs. Columns 3 and 4

show the median time (in seconds) required to discover the first

input that reaches the target location (time-to-target) for both con-

figurations, and column 5 shows the speed-up factor. Column 6

shows the p-value, which indicates the level of statistical signifi-

cance; here, we use p < 0.05 for “significant” differences. The last

two columns show Vargha-Delaney A12 effect sizes [75]. Intuitively,

these measure the probability that configuration A is faster than B

and vice versa.

For 32 (out of 60) target locations, we observe significant differ-

ences in time (i.e., p < 0.05), marked in bold in the table. Configu-
ration B significantly outperforms A for 31 (out of 32) of these target
locations, with amedian speed-up of up to 14x for one of the targets in
benchmark 26. In general, the results suggest that targeted fuzzing

is very effective, and unsurprisingly, its impact is most significant

for difficult targets (i.e., with high time-to-target for configuration

A). Specifically, for the 24 targets withTA ≥ 900 orTB ≥ 900, config-
uration B is significantly faster for 20, with insignificant differences
between A and B for the remaining 4 targets.

Note that running the static analysis with an empty prefix (re-

sembling an offline analysis) on these benchmarks is not able to

guide the fuzzer at all. Since all our target locations are reachable

by construction, the analysis soundly reports them as reachable.

Therefore, the fuzzer still needs to explore the entire contract to

see if they indeed are.

RQ2: Effectiveness of lookahead analysis. To measure the

effect of the lookahead analysis, we created configuration C, which

is identical to configuration B except that the analysis is maximally

imprecise and inexpensive. Specifically, AreTargetsUnreachable

from Alg. 2 simply returns false, and consequently, the computed

LIDs capture entire program paths, similarly to PIDs.
As shown in Tab. 3, there are significant differences between

configurations B and C for 21 target locations. Configuration B
is significantly faster than C for 17 out of 21 targets, and they are

equally fast for 2 of the remaining 4 target locations.

Interestingly, configuration C is faster than A (for all 12 target

locations with significant differences). This suggests that our power

schedule regarding rare split points is effective independently of

the lookahead analysis.

RQ3: Effectiveness of power schedule. To measure the effect

of targeting rare LIDs and rare split points in our power schedule,

we created configuration D. It is identical to configuration B ex-

cept that it uses a variant of AFLFast’s cut-off-exponential power

schedule [15]. The original power schedule assigns energy to an

input I based on how often its PID has been exercised. In contrast,

our variant is based on how often its LID has been exercised and

corresponds to using the results of the lookahead analysis with a

standard power schedule.

However, as shown in Tab. 4, configuration B is faster than con-
figuration D for 28 of 30 targets (with significant differences). This
indicates that our power schedule significantly reduces the time-

to-target, thus effectively guiding the fuzzer.

BID Target ID TA TB TA/TB p A12A A12B
1 79145a51:35ee 324.15 90.25 3.59 0.049 0.33 0.67

1 79145a51:bd4 32.69 69.53 0.47 0.130 0.63 0.37

2 060a46c9:d03 3385.55 706.71 4.79 0.000 0.20 0.80

2 060a46c9:e29 161.66 106.57 1.52 0.197 0.39 0.61

2 060a46c9:16a5 701.39 339.86 2.06 0.008 0.27 0.73

2 060a46c9:1f11 346.06 63.14 5.48 0.000 0.11 0.89

3 708721b5:1485 396.11 394.54 1.00 0.477 0.44 0.56

3 708721b5:4ac 2292.00 775.93 2.95 0.000 0.19 0.81

3 708721b5:1ca0 1248.59 817.76 1.53 0.005 0.26 0.74

3 708721b5:1132 413.00 216.72 1.91 0.003 0.24 0.76

4 9b8e6b2a:d08 3600.00 867.65 4.15 0.000 0.15 0.85

4 9b8e6b2a:18f0 1657.33 432.50 3.83 0.002 0.24 0.76

4 9b8e6b2a:1fee 143.96 47.13 3.05 0.062 0.34 0.66

4 9b8e6b2a:553 3600.00 833.70 4.32 0.001 0.22 0.78

5 5a3e5a7f:c09 3600.00 1282.42 2.81 0.000 0.08 0.92

5 5a3e5a7f:23f 900.53 466.99 1.93 0.017 0.30 0.70

5 5a3e5a7f:1da8 1355.07 646.41 2.10 0.000 0.16 0.84

5 5a3e5a7f:1d67 1497.96 524.08 2.86 0.000 0.15 0.85

6 387bdf82:da7 61.66 22.70 2.72 0.089 0.36 0.64

8 e2aedada:15a7 2592.56 1135.37 2.28 0.002 0.24 0.76

8 e2aedada:17bb 1783.03 612.39 2.91 0.001 0.22 0.78

8 e2aedada:d71 73.93 47.89 1.54 0.307 0.41 0.59

8 e2aedada:13a8 258.14 74.87 3.45 0.035 0.32 0.68

9 dada6ee2:1693 334.82 49.38 6.78 0.000 0.13 0.87

9 dada6ee2:bee 225.12 72.14 3.12 0.000 0.19 0.81

9 dada6ee2:90e 84.62 50.39 1.68 0.338 0.42 0.58

10 d98d1d6b:1f10 1124.84 281.45 4.00 0.004 0.26 0.74

10 d98d1d6b:401a 164.12 153.95 1.07 0.861 0.48 0.52

10 d98d1d6b:3cdd 1669.91 1817.05 0.92 0.729 0.53 0.47

10 d98d1d6b:3ce8 3600.00 3600.00 1.00 0.713 0.47 0.53

11 3ae06fbe:34db 3600.00 3600.00 1.00 0.105 0.38 0.62

11 3ae06fbe:3de2 150.22 81.77 1.84 0.557 0.45 0.55

11 3ae06fbe:3ef3 284.34 395.15 0.72 0.703 0.47 0.53

11 3ae06fbe:10b2 238.35 142.03 1.68 0.228 0.40 0.60

12 0203d94d:713 76.82 60.27 1.27 0.910 0.49 0.51

14 b8c706d1:125e 3600.00 3600.00 1.00 0.085 0.39 0.61

14 b8c706d1:3479 290.73 299.26 0.97 0.861 0.52 0.48

14 b8c706d1:2023 34.65 43.72 0.79 0.992 0.50 0.50

15 06ef1a9c:27ce 3365.87 467.90 7.19 0.000 0.10 0.90

15 06ef1a9c:b41 100.00 73.83 1.35 0.877 0.49 0.51

15 06ef1a9c:a16 71.00 39.46 1.80 0.106 0.36 0.64

17 1c57401c:ef1 186.24 218.20 0.85 0.101 0.64 0.36

17 1c57401c:558 45.72 111.38 0.41 0.130 0.63 0.37

18 ac0bf5ee:15e4 1827.66 321.36 5.69 0.000 0.12 0.88

18 ac0bf5ee:171b 176.36 48.04 3.67 0.000 0.16 0.84

18 ac0bf5ee:15e0 133.84 27.80 4.81 0.001 0.22 0.78

18 ac0bf5ee:70c 24.87 61.47 0.40 0.036 0.68 0.32

20 54142e12:1555 29.57 15.42 1.92 0.298 0.41 0.59

23 d047b56e:5fb 42.01 20.70 2.03 0.279 0.41 0.59

24 b9ebdb99:40c 980.79 139.78 7.02 0.000 0.13 0.87

24 b9ebdb99:3d1 282.28 57.21 4.93 0.000 0.18 0.82

25 f1e90f8f:9fd 316.48 24.61 12.86 0.000 0.09 0.91

26 a788e7af:1f07 1778.07 130.34 13.64 0.000 0.07 0.93

26 a788e7af:1e29 2005.67 336.04 5.97 0.000 0.12 0.88

26 a788e7af:544 395.22 47.84 8.26 0.140 0.38 0.62

26 a788e7af:32b 44.67 45.92 0.97 0.813 0.48 0.52

27 9473c978:1541 2445.87 324.46 7.54 0.020 0.31 0.69

27 9473c978:e33 1493.03 637.16 2.34 0.023 0.31 0.69

27 9473c978:150e 178.11 97.60 1.82 0.120 0.37 0.63

27 9473c978:8e8 102.29 150.72 0.68 0.236 0.60 0.40

Table 2: Comparing time-to-target between configuration A
(w/o lookahead analysis) and B (w/ lookahead analysis).

Nonetheless, configuration D is faster than A for all 6 targets

with significant differences. This shows the effectiveness of the

lookahead analysis independently of the power schedule.

8

Targeted Greybox Fuzzing with Static Lookahead Analysis ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

BID Target ID TC TB TC/TB p A12A A12B
1 79145a51:35ee 223.45 90.25 2.48 0.718 0.47 0.53

1 79145a51:bd4 69.07 69.53 0.99 0.658 0.46 0.54

2 060a46c9:d03 2164.66 706.71 3.06 0.005 0.27 0.73

2 060a46c9:e29 156.18 106.57 1.47 0.338 0.42 0.58

2 060a46c9:16a5 854.32 339.86 2.51 0.042 0.33 0.67

2 060a46c9:1f11 56.01 63.14 0.89 0.926 0.49 0.51

3 708721b5:1485 527.02 394.54 1.34 0.797 0.48 0.52

3 708721b5:4ac 2000.32 775.93 2.58 0.007 0.27 0.73

3 708721b5:1ca0 775.97 817.76 0.95 0.327 0.42 0.58

3 708721b5:1132 298.71 216.72 1.38 0.317 0.41 0.59

4 9b8e6b2a:d08 3600.00 867.65 4.15 0.000 0.07 0.93

4 9b8e6b2a:18f0 1288.76 432.50 2.98 0.008 0.28 0.72

4 9b8e6b2a:1fee 88.80 47.13 1.88 0.557 0.45 0.55

4 9b8e6b2a:553 3508.27 833.70 4.21 0.000 0.10 0.90

5 5a3e5a7f:c09 3600.00 1282.42 2.81 0.000 0.09 0.91

5 5a3e5a7f:23f 2102.80 466.99 4.50 0.000 0.19 0.81

5 5a3e5a7f:1da8 1961.40 646.41 3.03 0.001 0.21 0.79

5 5a3e5a7f:1d67 1977.32 524.08 3.77 0.001 0.22 0.78

6 387bdf82:da7 20.35 22.70 0.90 0.317 0.59 0.41

8 e2aedada:15a7 2381.94 1135.37 2.10 0.004 0.26 0.74

8 e2aedada:17bb 915.16 612.39 1.49 0.071 0.35 0.65

8 e2aedada:d71 30.51 47.89 0.64 0.571 0.55 0.45

8 e2aedada:13a8 91.11 74.87 1.22 0.845 0.48 0.52

9 dada6ee2:1693 253.55 49.38 5.13 0.000 0.18 0.82

9 dada6ee2:bee 111.31 72.14 1.54 0.038 0.32 0.68

9 dada6ee2:90e 49.37 50.39 0.98 0.628 0.54 0.46

10 d98d1d6b:1f10 139.34 281.45 0.50 0.093 0.64 0.36

10 d98d1d6b:401a 145.53 153.95 0.95 0.829 0.52 0.48

10 d98d1d6b:3ce8 3600.00 3600.00 1.00 0.226 0.41 0.59

10 d98d1d6b:3cdd 3600.00 1817.05 1.98 0.146 0.38 0.62

11 3ae06fbe:34db 3600.00 3600.00 1.00 0.027 0.35 0.65

11 3ae06fbe:3de2 169.72 81.77 2.08 0.158 0.38 0.62

11 3ae06fbe:3ef3 182.77 395.15 0.46 0.135 0.63 0.37

11 3ae06fbe:10b2 214.12 142.03 1.51 0.942 0.51 0.49

12 0203d94d:713 44.13 60.27 0.73 0.516 0.56 0.44

14 b8c706d1:125e 3600.00 3600.00 1.00 0.010 0.35 0.65

14 b8c706d1:3479 108.30 299.26 0.36 0.110 0.64 0.36

14 b8c706d1:2023 40.71 43.72 0.93 0.845 0.52 0.48

15 06ef1a9c:27ce 2458.74 467.90 5.25 0.001 0.23 0.77

15 06ef1a9c:b41 59.20 73.83 0.80 0.228 0.60 0.40

15 06ef1a9c:a16 57.15 39.46 1.45 0.529 0.45 0.55

17 1c57401c:ef1 104.23 218.20 0.48 0.009 0.72 0.28

17 1c57401c:558 63.84 111.38 0.57 0.009 0.72 0.28

18 ac0bf5ee:15e4 719.04 321.36 2.24 0.007 0.27 0.73

18 ac0bf5ee:171b 106.78 48.04 2.22 0.002 0.23 0.77

18 ac0bf5ee:15e0 21.29 27.80 0.77 0.370 0.58 0.42

18 ac0bf5ee:70c 26.28 61.47 0.43 0.051 0.66 0.34

20 54142e12:1555 17.67 15.42 1.15 0.585 0.55 0.45

23 d047b56e:5fb 17.53 20.70 0.85 0.571 0.55 0.45

24 b9ebdb99:40c 178.49 139.78 1.28 0.138 0.37 0.63

24 b9ebdb99:3d1 115.03 57.21 2.01 0.089 0.36 0.64

25 f1e90f8f:9fd 114.00 24.61 4.63 0.000 0.16 0.84

26 a788e7af:1f07 323.97 130.34 2.49 0.089 0.36 0.64

26 a788e7af:1e29 404.19 336.04 1.20 0.797 0.48 0.52

26 a788e7af:544 142.41 47.84 2.98 0.464 0.44 0.56

26 a788e7af:32b 40.09 45.92 0.87 0.992 0.50 0.50

27 9473c978:1541 2320.70 324.46 7.15 0.210 0.39 0.61

27 9473c978:e33 1824.92 637.16 2.86 0.052 0.34 0.66

27 9473c978:150e 49.45 97.60 0.51 0.205 0.61 0.39

27 9473c978:8e8 95.71 150.72 0.63 0.244 0.60 0.40

Table 3: Comparing time-to-target for configurations B
and C.

RQ4: Scalability of lookahead analysis. One key design deci-

sion for using an online static analysis as part of a dynamic analysis

(i.e., greybox fuzzing) was to make the static analysis as lightweight

BID Target ID TD TB TD/TB p A12A A12B
1 79145a51:35ee 252.95 90.25 2.80 0.030 0.32 0.68

1 79145a51:bd4 64.12 69.53 0.92 0.688 0.53 0.47

2 060a46c9:d03 1734.13 706.71 2.45 0.013 0.29 0.71

2 060a46c9:e29 246.00 106.57 2.31 0.042 0.33 0.67

2 060a46c9:16a5 579.02 339.86 1.70 0.120 0.37 0.63

2 060a46c9:1f11 219.87 63.14 3.48 0.000 0.19 0.81

3 708721b5:1485 337.42 394.54 0.86 0.781 0.52 0.48

3 708721b5:4ac 1553.51 775.93 2.00 0.013 0.29 0.71

3 708721b5:1ca0 1001.05 817.76 1.22 0.183 0.39 0.61

3 708721b5:1132 353.12 216.72 1.63 0.049 0.33 0.67

4 9b8e6b2a:d08 1353.86 867.65 1.56 0.030 0.32 0.68

4 9b8e6b2a:18f0 1008.23 432.50 2.33 0.033 0.32 0.68

4 9b8e6b2a:1fee 172.58 47.13 3.66 0.002 0.24 0.76

4 9b8e6b2a:553 2464.13 833.70 2.96 0.000 0.16 0.84

5 5a3e5a7f:c09 3381.14 1282.42 2.64 0.001 0.21 0.79

5 5a3e5a7f:23f 515.76 466.99 1.10 0.220 0.40 0.60

5 5a3e5a7f:1da8 1197.92 646.41 1.85 0.002 0.24 0.76

5 5a3e5a7f:1d67 855.79 524.08 1.63 0.003 0.25 0.75

6 387bdf82:da7 110.41 22.70 4.86 0.000 0.18 0.82

8 e2aedada:15a7 2194.73 1135.37 1.93 0.002 0.24 0.76

8 e2aedada:17bb 1021.35 612.39 1.67 0.101 0.36 0.64

8 e2aedada:d71 82.30 47.89 1.72 0.097 0.36 0.64

8 e2aedada:13a8 188.01 74.87 2.51 0.051 0.34 0.66

9 dada6ee2:1693 279.31 49.38 5.66 0.001 0.23 0.77

9 dada6ee2:bee 195.79 72.14 2.71 0.006 0.27 0.73

9 dada6ee2:90e 45.93 50.39 0.91 0.992 0.50 0.50

10 d98d1d6b:1f10 606.63 281.45 2.16 0.085 0.35 0.65

10 d98d1d6b:3ce8 3600.00 3600.00 1.00 0.840 0.52 0.48

10 d98d1d6b:401a 254.15 153.95 1.65 0.228 0.40 0.60

10 d98d1d6b:3cdd 1956.69 1817.05 1.08 0.857 0.48 0.52

11 3ae06fbe:34db 3591.91 3600.00 1.00 0.885 0.51 0.49

11 3ae06fbe:3de2 181.38 81.77 2.22 0.130 0.37 0.63

11 3ae06fbe:3ef3 383.75 395.15 0.97 0.158 0.38 0.62

11 3ae06fbe:10b2 163.65 142.03 1.15 0.781 0.48 0.52

12 0203d94d:713 38.85 60.27 0.64 0.220 0.60 0.40

14 b8c706d1:125e 3600.00 3600.00 1.00 0.449 0.45 0.55

14 b8c706d1:3479 501.51 299.26 1.68 0.338 0.42 0.58

14 b8c706d1:2023 62.22 43.72 1.42 0.164 0.38 0.62

15 06ef1a9c:27ce 2514.11 467.90 5.37 0.000 0.10 0.90

15 06ef1a9c:b41 119.89 73.83 1.62 0.252 0.40 0.60

15 06ef1a9c:a16 102.73 39.46 2.60 0.020 0.30 0.70

17 1c57401c:ef1 89.83 218.20 0.41 0.025 0.69 0.31

17 1c57401c:558 66.72 111.38 0.60 0.184 0.61 0.39

18 ac0bf5ee:15e4 947.01 321.36 2.95 0.020 0.30 0.70

18 ac0bf5ee:171b 177.27 48.04 3.69 0.004 0.25 0.75

18 ac0bf5ee:15e0 72.29 27.80 2.60 0.071 0.35 0.65

18 ac0bf5ee:70c 29.28 61.47 0.48 0.021 0.69 0.31

20 54142e12:1555 24.46 15.42 1.59 0.516 0.44 0.56

23 d047b56e:5fb 36.38 20.70 1.76 0.348 0.42 0.58

24 b9ebdb99:40c 785.68 139.78 5.62 0.000 0.15 0.85

24 b9ebdb99:3d1 221.02 57.21 3.86 0.000 0.15 0.85

25 f1e90f8f:9fd 232.58 24.61 9.45 0.000 0.01 0.99

26 a788e7af:1f07 533.02 130.34 4.09 0.016 0.30 0.70

26 a788e7af:1e29 513.20 336.04 1.53 0.599 0.45 0.55

26 a788e7af:544 335.21 47.84 7.01 0.028 0.31 0.69

26 a788e7af:32b 72.62 45.92 1.58 0.543 0.45 0.55

27 9473c978:1541 1938.89 324.46 5.98 0.027 0.31 0.69

27 9473c978:e33 1517.21 637.16 2.38 0.024 0.31 0.69

27 9473c978:150e 160.07 97.60 1.64 0.093 0.36 0.64

27 9473c978:8e8 112.27 150.72 0.74 0.543 0.55 0.45

Table 4: Comparing time-to-target for configurations B
and D.

and scalable as sensible. That is why our lookahead analysis is

modular and uses an inexpensive, and therefore scalable, constant-

propagation domain.

9

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Valentin Wüstholz and Maria Christakis

Our results confirm that the total running time of the lookahead
analysis is a tiny fraction of the total running time of the fuzzer
(0.09–105.93s of a total of 3600s per benchmark, median 2.73s). This
confirms that even a very lightweight static analysis can boost the

effectiveness of fuzzing.

RQ5: Effect on instruction coverage. In our evaluation, there
were no noticeable instruction-coverage differences between any of
our configurations.

This indicates that our approach to targeted greybox fuzzing

mainly affects the order in which different program locations are

reached. Even though we prioritize certain inputs by assigning

more energy to them, the fuzzer still mutates them randomly and

eventually covers the same instructions as standard fuzzing. To

avoid this, we would need to restrict some mutations (e.g., ones

that never discover new LIDs), much like FairFuzz [54] restricts

mutations that do not reach rare branches.

6.4 Threats to Validity
We have identified the following threats to validity.

External validity. A potential threat to the validity of our ex-

periments has to do with external validity [71]. In particular, our

results may not generalize to other contracts or programs. To al-

leviate this threat, we selected benchmarks from several, diverse

application domains. Moreover, we provide the versions of all con-

tracts used in our experiments so that others can also test them [80].

The results may also not generalize to other target locations, but we

alleviate this threat by selecting them at random and with varying

difficulty to reach.

Internal validity. Internal validity [71] is compromised when

systematic errors are introduced in the experimental setup. A com-

mon pitfall in evaluating randomized approaches, such as fuzzing,

is the potentially biased selection of seeds. During our experiments,

when comparing the different configurations of our technique, we

consistently used the same seed inputs for Harvey.

Construct validity. Construct validity ensures that any im-

provements, for instance in effectiveness or performance, achieved

by a particular technique are due to that technique alone, and not

due to other factors, such as better engineering. In our experiments,

we compare different configurations of the same greybox fuzzer,

and consequently, any effect on the results is exclusively caused by

their differences.

7 RELATEDWORK
Our technique for targeted greybox fuzzing leverages an online

static analysis to semantically analyze each new path that is added

to the fuzzer’s test suite. The feedback collected by the static analy-

sis is used to guide the fuzzer toward a set of target locations using

a novel power schedule that takes inspiration from two existing

ones [15, 54].

In contrast, the most closely related work [14] performs an of-

fline instrumentation of the program under test encoding a static

distance metric between the instrumented and the target locations

in the control-flow graph. When running a given input, the instru-

mentation is used to obtain a dynamic (aggregated) distance. This

distance subsequently guides the fuzzer toward the target locations.

Since a control-flow graph cannot always be easily recovered

from EVM bytecode (e.g., due to indirect jumps), our lookahead

analysis directly analyzes the bytecode using abstract interpreta-

tion [26, 27]. Our implementation uses the constant-propagation

domain [49] to track the current state of the EVM (for instance, to

resolve jump targets that are pushed to the execution stack). Unlike

traditional static analyses, it aims to improve precision by perform-

ing a partially path-sensitive analysis—that is, path-sensitive for

a prefix of a feasible path recorded at runtime by the fuzzer, and

path-insensitive for all suffix paths.

Guiding greybox fuzzers. Besides AFLGo [14], there is a num-

ber of greybox fuzzers that target specific program locations [20],

rare branches [54], uncovered branches [55, 76], or suspected vul-

nerabilities [22, 37, 46, 56]. While several of these fuzzers use an

offline static analysis to guide the exploration, none of them lever-

ages an online analysis.

Guiding other program analyzers. There is a large body of

work on guiding analyzers toward specific target locations [60, 63]

or potential failures [23, 29–32, 35, 38, 42, 61, 66] by combining

static and dynamic analysis. These combinations typically perform

an offline static analysis first and use it to improve the effective-

ness of a subsequent dynamic analysis; for instance, by pruning

parts of the program. For example, Check ’n’ Crash [29] integrates

the ESC/Java static checker [36] with the JCrasher test-generation

tool [28]. Similarly, DyTa [38] combines the .NET static analyzer

Clousot [33] with the dynamic symbolic execution engine Pex [73].

YOGI [42, 66] constantly refines its over- and under-approximations

in the style of counterexample-driven refinement [25]. In contrast,

our lookahead analysis is online and constitutes a core component

of our targeted greybox fuzzer.

Hybrid concolic testing [62] combines random testing with con-

colic testing [18, 40, 70]. Even though the technique significantly

differs from ours, it shares an interesting similarity: it uses online

concolic testing during a concrete program execution to discover

uncovered code on-the-fly.When successful, the inputs for covering

the code are used to resume the concrete program execution.

Symbolic execution. In the context of symbolic execution [50],

there have emerged numerous search strategies for guiding the ex-

ploration; for instance, to target deeper paths (in depth-first search),

uncovered statements [68], or “less-traveled paths” [57]. Our tech-

nique resembles a search strategy in that it prioritizes exploration

of certain inputs over others.

Compositional symbolic execution [11, 39] has been shown to be

effective inmerging different program paths bymeans of summaries

in order to alleviate path explosion. Dynamic state merging [53]

and veritesting [12] can also be seen as forms of summarization.

Similarly, our technique merges different paths that share the same

lookahead identifier for the purpose of assigning energy. The more

precise the lookahead analysis, the shorter the no-target-ahead

prefixes, and thus, the more effective the merging.

Program analysis for smart contracts. There is a growing

number of program analyzers for smart contracts, ranging from

random test generation frameworks [2, 47] to static analyzers and

verifiers [4, 10, 13, 16, 19, 21, 34, 43–45, 48, 52, 59, 64, 65, 74, 77]. In

contrast, we present a targeted greybox fuzzer for smart contracts,

the first analyzer for contracts that incorporates static and dynamic

analysis.

10

Targeted Greybox Fuzzing with Static Lookahead Analysis ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

8 CONCLUSION
We have presented a novel technique for targeted fuzzing using

static lookahead analysis. The key idea is to enable a symbiotic col-

laboration between the greybox fuzzer and an online static analysis.

On one hand, dynamic information (i.e., feasible program paths)

are used to boost the precision of the static analysis. On the other

hand, static information about reachable target locations—more

specifically, lookahead identifiers and split points—is used to guide

the greybox fuzzer toward target locations. Our experiments on

27 real-world benchmarks show that targeted fuzzing significantly

outperforms standard greybox fuzzing for reaching 83% of the chal-

lenging target locations (up to 14x of median speed-up).

We believe that the idea of using an online lookahead analysis to

prune the search space of a path-based technique (e.g., fuzzing or

symbolic execution) is not specific to smart contracts. However, the

trade-offs (e.g., with respect to scalability of the lookahead analysis)

may be significantly different in other settings (whether different

programming languages, or different path-based techniques). We

plan to investigate such variants in the future.

ACKNOWLEDGMENTS
We are grateful to the reviewers for their valuable feedback.

Maria Christakis’s work was supported by DFG grant 389792660

as part of TRR 248 (see https://perspicuous-computing.science) and

a Facebook Faculty Research Award.

REFERENCES
[1] [n.d.]. The AFL Vulnerability Trophy Case. http://lcamtuf.coredump.cx/afl/#bugs.

[2] [n.d.]. Echidna. https://github.com/trailofbits/echidna.

[3] [n.d.]. LibFuzzer—A Library for Coverage-Guided Fuzz Testing. https://llvm.

org/docs/LibFuzzer.html.

[4] [n.d.]. Mythril. https://github.com/ConsenSys/mythril-classic.

[5] [n.d.]. Peach Fuzzer Platform. https://www.peach.tech/products/peach-fuzzer/

peach-platform.

[6] [n.d.]. Technical “Whitepaper” for AFL. http://lcamtuf.coredump.cx/afl/

technical_details.txt.

[7] [n.d.]. Underhanded Solidity Coding Contest. http://u.solidity.cc.

[8] [n.d.]. zzuf—Multi-Purpose Fuzzer. http://caca.zoy.org/wiki/zzuf.

[9] 2014. Ethereum White Paper. https://github.com/ethereum/wiki/wiki/White-

Paper.

[10] Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples. 2018. Towards

Verifying Ethereum Smart Contract Bytecode in Isabelle/HOL. In CPP. ACM,

66–77.

[11] Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. 2008. Demand-Driven

Compositional Symbolic Execution. In TACAS (LNCS), Vol. 4963. Springer, 367–
381.

[12] Thanassis Avgerinos, Alexander Rebert, Sang Kil Cha, and David Brumley. 2014.

Enhancing Symbolic Execution with Veritesting. In ICSE. ACM, 1083–1094.

[13] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gol-

lamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi,

Thomas Sibut-Pinote, Nikhil Swamy, and Santiago Zanella-Béguelin. 2016. Formal

Verification of Smart Contracts: Short Paper. In PLAS. ACM, 91–96.

[14] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-

hury. 2017. Directed Greybox Fuzzing. In CCS. ACM, 2329–2344.

[15] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-

Based Greybox Fuzzing as Markov Chain. In CCS. ACM, 1032–1043.

[16] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, François Gauthier, Vincent

Gramoli, Ralph Holz, and Bernhard Scholz. 2018. Vandal: A Scalable Security

Analysis Framework for Smart Contracts. CoRR abs/1809.03981 (2018).

[17] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and

Automatic Generation of High-Coverage Tests for Complex Systems Programs.

In OSDI. USENIX, 209–224.
[18] Cristian Cadar and Dawson R. Engler. 2005. Execution Generated Test Cases:

How to Make Systems Code Crash Itself. In SPIN (LNCS), Vol. 3639. Springer,
2–23.

[19] Krishnendu Chatterjee, Amir Kafshdar Goharshady, and Yaron Velner. 2018.

Quantitative Analysis of Smart Contracts. In ESOP (LNCS), Vol. 10801. Springer,

739–767.

[20] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng Wu,

and Yang Liu. 2018. Hawkeye: Towards a Desired Directed Grey-box Fuzzer. In

CCS. ACM, 2095–2108.

[21] Ting Chen, Xiaoqi Li, Xiapu Luo, and Xiaosong Zhang. 2017. Under-Optimized

Smart Contracts Devour your Money. In SANER. IEEE Computer Society, 442–

446.

[22] Animesh Basak Chowdhury, Raveendra Kumar Medicherla, and R. Venkatesh.

2019. VeriFuzz: Program Aware Fuzzing—(Competition Contribution). In TACAS
(LNCS), Vol. 11429. Springer, 244–249.

[23] Maria Christakis, Peter Müller, and Valentin Wüstholz. 2016. Guiding Dynamic

Symbolic Execution Toward Unverified Program Executions. In ICSE. ACM, 144–

155.

[24] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for

Random Testing of Haskell Programs. In ICFP. ACM, 268–279.

[25] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

2000. Counterexample-Guided Abstraction Refinement. In CAV (LNCS), Vol. 1855.
Springer, 154–169.

[26] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified

Lattice Model for Static Analysis of Programs by Construction or Approximation

of Fixpoints. In POPL. ACM, 238–252.

[27] Patrick Cousot and Radhia Cousot. 1979. Systematic Design of Program Analysis

Frameworks. In POPL. ACM, 269–282.

[28] Christoph Csallner and Yannis Smaragdakis. 2004. JCrasher: An Automatic

Robustness Tester for Java. SPE 34 (2004), 1025–1050. Issue 11.

[29] Christoph Csallner and Yannis Smaragdakis. 2005. Check ’n’ Crash: Combining

Static Checking and Testing. In ICSE. ACM, 422–431.

[30] Mike Czech, Marie-Christine Jakobs, and Heike Wehrheim. 2015. Just Test What

You Cannot Verify!. In FASE (LNCS), Vol. 9033. Springer, 100–114.
[31] David Devecsery, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. 2018.

Optimistic Hybrid Analysis: Accelerating Dynamic Analysis Through Predicated

Static Analysis. In ASPLOS. ACM, 348–362.

[32] Matthew B. Dwyer and Rahul Purandare. 2007. Residual Dynamic Typestate

Analysis Exploiting Static Analysis: Results to Reformulate and Reduce the Cost

of Dynamic Analysis. In ASE. ACM, 124–133.

[33] Manuel Fähndrich and Francesco Logozzo. 2010. Static Contract Checking with

Abstract Interpretation. In FoVeOOS (LNCS), Vol. 6528. Springer, 10–30.
[34] Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: A Static Analysis

Framework for Smart Contracts. InWETSEB. IEEE Computer Society/ACM, 8–15.

[35] Kostas Ferles, Valentin Wüstholz, Maria Christakis, and Isil Dillig. 2017. Failure-

Directed Program Trimming. In ESEC/FSE. ACM, 174–185.

[36] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.

Saxe, and Raymie Stata. 2002. Extended Static Checking for Java. In PLDI. ACM,

234–245.

[37] Vijay Ganesh, Tim Leek, and Martin C. Rinard. 2009. Taint-Based Directed

Whitebox Fuzzing. In ICSE. IEEE Computer Society, 474–484.

[38] Xi Ge, Kunal Taneja, Tao Xie, and Nikolai Tillmann. 2011. DyTa: Dynamic

Symbolic Execution Guided with Static Verification Results. In ICSE. ACM, 992–

994.

[39] Patrice Godefroid. 2007. Compositional Dynamic Test Generation. In POPL. ACM,

47–54.

[40] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-

mated Random Testing. In PLDI. ACM, 213–223.

[41] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated

Whitebox Fuzz Testing. In NDSS. The Internet Society, 151–166.
[42] Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and SaiDeep Tetali. 2010.

Compositional May-Must Program Analysis: Unleashing the Power of Alterna-

tion. In POPL. ACM, 43–56.

[43] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz,

and Yannis Smaragdakis. 2018. MadMax: Surviving Out-of-Gas Conditions in

Ethereum Smart Contracts. PACMPL 2 (2018), 116:1–116:27. Issue OOPSLA.

[44] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam

Rinetzky, Mooly Sagiv, and Yoni Zohar. 2018. Online Detection of Effectively

Callback Free Objects with Applications to Smart Contracts. PACMPL 2 (2018),

48:1–48:28. Issue POPL.

[45] Ákos Hajdu and Dejan Jovanovic. 2019. solc-verify: A Modular Verifier for

Solidity Smart Contracts. In VSTTE (LNCS). Springer. To appear.

[46] István Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert Bos. 2013.

Dowsing for Overflows: A Guided Fuzzer to Find Buffer Boundary Violations. In

Security. USENIX, 49–64.
[47] Bo Jiang, Ye Liu, and W. K. Chan. 2018. ContractFuzzer: Fuzzing Smart Contracts

for Vulnerability Detection. In ASE. ACM, 259–269.

[48] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:

Analyzing Safety of Smart Contracts. In NDSS. The Internet Society.
[49] Gary A. Kildall. 1973. A Unified Approach to Global Program Optimization. In

POPL. ACM, 194–206.

[50] James C. King. 1976. Symbolic Execution and Program Testing. CACM 19 (1976),

385–394. Issue 7.

11

https://perspicuous-computing.science
http://lcamtuf.coredump.cx/afl/#bugs
https://github.com/trailofbits/echidna
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://github.com/ConsenSys/mythril-classic
https://www.peach.tech/products/peach-fuzzer/peach-platform
https://www.peach.tech/products/peach-fuzzer/peach-platform
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://u.solidity.cc
http://caca.zoy.org/wiki/zzuf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Valentin Wüstholz and Maria Christakis

[51] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.

Evaluating Fuzz Testing. In CCS. ACM, 2123–2138.

[52] Johannes Krupp and Christian Rossow. 2018. teEther: Gnawing at Ethereum to

Automatically Exploit Smart Contracts. In Security. USENIX, 1317–1333.
[53] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. 2012.

Efficient State Merging in Symbolic Execution. In PLDI. ACM, 193–204.

[54] Caroline Lemieux and Koushik Sen. 2018. FairFuzz: A Targeted Mutation Strategy

for Increasing Greybox Fuzz Testing Coverage. In ASE. ACM, 475–485.

[55] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,

and Alwen Tiu. 2017. Steelix: Program-State Based Binary Fuzzing. In ESEC/FSE.
ACM, 627–637.

[56] Yuwei Li, Shouling Ji, Chenyang Lv, Yuan Chen, Jianhai Chen, Qinchen Gu, and

ChunmingWu. 2019. V-Fuzz: Vulnerability-Oriented Evolutionary Fuzzing. CoRR
abs/1901.01142 (2019).

[57] You Li, Zhendong Su, Linzhang Wang, and Xuandong Li. 2013. Steering Symbolic

Execution to Less Traveled Paths. In OOPSLA. ACM, 19–32.

[58] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J. Nelson

Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders Møller,

and Dimitrios Vardoulakis. 2015. In Defense of Soundiness: A Manifesto. CACM
58 (2015), 44–46. Issue 2.

[59] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016.

Making Smart Contracts Smarter. In CCS. ACM, 254–269.

[60] Kin-Keung Ma, Yit Phang Khoo, Jeffrey S. Foster, and Michael Hicks. 2011. Di-

rected Symbolic Execution. In SAS (LNCS), Vol. 6887. Springer, 95–111.
[61] Lei Ma, Cyrille Artho, Cheng Zhang, Hiroyuki Sato, Johannes Gmeiner, and

Rudolf Ramler. 2015. GRT: Program-Analysis-Guided Random Testing. In ASE.
IEEE Computer Society, 212–223.

[62] Rupak Majumdar and Koushik Sen. 2007. Hybrid Concolic Testing. In ICSE. IEEE
Computer Society, 416–426.

[63] Paul Dan Marinescu and Cristian Cadar. 2013. KATCH: High-Coverage Testing

of Software Patches. In ESEC/FSE. ACM, 235–245.

[64] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco,

Josselin Feist, Trent Brunson, and Artem Dinaburg. 2019. Manticore: A User-

Friendly Symbolic Execution Framework for Binaries and Smart Contracts. CoRR
abs/1907.03890 (2019).

[65] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.

2018. Finding the Greedy, Prodigal, and Suicidal Contracts at Scale. (2018),

653–663.

[66] Aditya V. Nori, Sriram K. Rajamani, Saideep Tetali, and Aditya V. Thakur. 2009.

The YOGI Project: Software Property Checking via Static Analysis and Testing.

In TACAS (LNCS), Vol. 5505. Springer, 178–181.
[67] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.

Feedback-Directed Random Test Generation. In ICSE. IEEE Computer Society,

75–84.

[68] Sangmin Park, B. M. Mainul Hossain, Ishtiaque Hussain, Christoph Csallner,

Mark Grechanik, Kunal Taneja, Chen Fu, and Qing Xie. 2012. CarFast: Achieving

Higher Statement Coverage Faster. In FSE. ACM, 35.

[69] Siraj Raval. 2016. Decentralized Applications: Harnessing Bitcoin’s Blockchain
Technology. O’Reilly Media.

[70] Koushik Sen and Gul Agha. 2006. CUTE and jCUTE: Concolic Unit Testing

and Explicit Path Model-Checking Tools. In CAV (LNCS), Vol. 4144. Springer,
419–423.

[71] Janet Siegmund, Norbert Siegmund, and Sven Apel. 2015. Views on Internal and

External Validity in Empirical Software Engineering. In ICSE. IEEE Computer

Society, 9–19.

[72] Melanie Swan. 2015. Blockchain: Blueprint for a New Economy. O’Reilly Media.

[73] Nikolai Tillmann and Jonathan de Halleux. 2008. Pex—White Box Test Generation

for .NET. In TAP (LNCS), Vol. 4966. Springer, 134–153.
[74] Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais,

Florian Bünzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis

of Smart Contracts. In CCS. ACM, 67–82.

[75] András Vargha and Harold D. Delaney. 2000. A Critique and Improvement of

the CL Common Language Effect Size Statistics of McGraw and Wong. JEBS 25
(2000), 101–132. Issue 2.

[76] Mingzhe Wang, Jie Liang, Yuanliang Chen, Yu Jiang, Xun Jiao, Han Liu, Xibin

Zhao, and Jiaguang Sun. 2018. SAFL: Increasing and Accelerating Testing Cov-

erage with Symbolic Execution and Guided Fuzzing. In ICSE Companion. ACM,

61–64.

[77] Yuepeng Wang, Shuvendu K. Lahiri, Shuo Chen, Rong Pan, Isil Dillig, Cody Born,

and Immad Naseer. 2019. Formal Verification of Workflow Policies for Smart

Contracts in Azure Blockchain. In VSTTE (LNCS). Springer. To appear.

[78] Gavin Wood. 2014. Ethereum: A Secure Decentralised Generalised Transaction

Ledger. http://gavwood.com/paper.pdf.

[79] Valentin Wüstholz and Maria Christakis. 2019. Harvey: A Greybox Fuzzer for

Smart Contracts. CoRR abs/1905.06944 (2019).

[80] Valentin Wüstholz and Maria Christakis. 2019. Targeted Greybox Fuzzing with

Static Lookahead Analysis. CoRR abs/1905.07147 (2019).

12

http://gavwood.com/paper.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Greybox Fuzzing
	2.2 Smart Contracts

	3 Overview
	4 Technique
	4.1 Lookahead Analysis
	4.2 Fuzzing with Lookahead Analysis
	4.3 Lookahead Algorithm

	5 Implementation
	6 Experimental Evaluation
	6.1 Benchmark Selection
	6.2 Experimental Setup
	6.3 Results
	6.4 Threats to Validity

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

