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Abstract

Testing is a promising way to gain trust in neural action poli-
cies π. Previous work on policy testing in sequential deci-
sion making targeted environment behavior leading to failure
conditions. But if the failure is unavoidable given that behav-
ior, then π is not actually to blame. For a situation to qual-
ify as a “bug” in π, there must be an alternative policy π′

that does better. We introduce a generic policy testing frame-
work based on that intuition. This raises the bug confirmation
problem, deciding whether or not a state is a bug. We analyze
the use of optimistic and pessimistic bounds for the design
of test oracles approximating that problem. We contribute an
implementation of our framework in classical planning, ex-
perimenting with several test oracles and with random-walk
methods generating test states biased to poor policy perfor-
mance and/or state novelty. We evaluate these techniques on
policies π learned with ASNets. We find that they are able to
effectively identify bugs in these π, and that our random-walk
biases improve over uninformed baselines.

1 Introduction
The use of neural networks (NN) to learn action policies π
is highly successful in game playing (Mnih et al. 2013; Sil-
ver et al. 2018), and is gaining traction in AI Planning (Is-
sakkimuthu, Fern, and Tadepalli 2018; Groshev et al. 2018;
Garg, Bajpai, and Mausam 2019; Toyer et al. 2020; Karia
and Srivastava 2021). A policy π can take real-time de-
cisions in dynamic environments, simply by evaluating it
on the current state to obtain the next action. Yet this ap-
proach comes with obvious concerns regarding potential
policy “bugs”, i.e., undesirable or fatal policy behavior. Test-
ing – trying to find cases where such behavior occurs – is a
natural paradigm to address this. Automatic test-case gen-
eration can serve to assess the quality of π, and ultimately,
through extensive testing, to certify that π can be trusted.

Previous work on testing in sequential decision making
controls environment behavior (the state-transition selection
in an MDP) and tries to find sequences of environment de-
cisions under which a failure condition ϕ becomes satisfied
(e.g., Dreossi et al. 2015; Akazaki et al. 2018; Koren et al.
2018; Ernst et al. 2019; Lee et al. 2020). But if the failure is
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unavoidable, then π is not actually to blame. So this form of
testing makes sense only if failures are avoidable by design.

Here we introduce a generally applicable framework for
action-policy testing. Our core intuition is that, for a situa-
tion to qualify as a “bug” in π, there must be an alternative
policy π′ that does better. Focusing on states s (rather than
sequences of environment disturbances) as the “situations”,
we formalize this intuition as sub-optimal performance of π
on s relative to a testing objective. That objective can be a
standard optimization objective like additive-cost minimiza-
tion, but it can also be a simpler objective whose main pur-
pose is testing, like reaching the goal wherever possible, or
avoiding a failure condition ϕ wherever possible.

Obviously, given this definition, the bug confirmation
problem – deciding whether or not a test state s is a bug
– is hard. We need to decide, e.g., whether failure can be
avoided when starting from a given state s. Towards scal-
able approaches to do so, we explore test oracles: sufficient
criteria that can confirm some (though not all) bugs.

A natural question is whether such oracles can be ob-
tained by drawing on the wealth of known optimistic and
pessimistic approximations of planning, in particular the ex-
tensive work on admissible heuristic functions (e.g., Haslum
and Geffner 2000; Edelkamp 2001; Helmert and Domshlak
2009; Helmert et al. 2014; Pommerening et al. 2015; Davies
et al. 2015; Trevizan, Thiébaux, and Haslum 2017; Klösner
et al. 2021). Can optimistic and/or pessimistic bounds be
employed to show that a given policy behavior is neces-
sarily sub-optimal? Analyzing that question, we determine
that, unfortunately, this approach boils down to finding a
pessimistic bound (an alternative policy) better than π. In
particular, optimistic bounds do not per se provide any added
value for bug-confirmation oracles.

That said, policy-quality improvement can of course be
practical, and there are various special cases in which (some)
information about plans can be obtained in different ways.
We explore these practical matters in classical finite-domain
representation (FDR) planning. We consider two testing ob-
jectives, namely additive-cost minimization (which we will
refer to as quantitative-FDR) and reaching the goal wherever
possible (qualitative-FDR). We use test oracles based on
plan-quality improvement (Nakhost and Müller 2010) and
special-case oracles that apply when all actions are invert-



ible. To generate test states s, we introduce simple fuzzing
methods based on random walks. We explore fuzzing bi-
ases geared towards poor policy performance, and geared
towards novelty (Lipovetzky and Geffner 2012, 2017).

We evaluate our techniques on NN action policies learned
with ASNets (Toyer et al. 2018, 2020). We run experiments
on a collection of benchmark domains from the International
Planning Competition (IPC). We find that our testing meth-
ods are effective in identifying bugs in ASNet policies, and
that our fuzzing biases improve over uninformed baselines.

2 FDR Planning and Policies in FDR
Our approach is, in principle, agnostic to the planning for-
malism. Nevertheless, to make things concrete, we focus on
FDR classical planning as addressed in our experiments.

An FDR task is a tuple Π = ⟨V,A, c, I,G⟩. V is a fi-
nite set of variables, each v ∈ V is associated with a finite
domain D(v). A state s is a complete variable assignment;
we denote the set of all states with S. I ∈ S is the initial
state. The goal G is a partial assignment. A is a finite set
of actions, each a ∈ A is a pair ⟨pre(a), eff(a)⟩ of pre-
condition and effect, both partial assignments. c is a cost
function c : A 7→ R0+. Action a is applicable in state s
if pre(a) ⊆ s; we denote the set of actions applicable to
s by A[s]. Applying a ∈ A[s] to s changes the value of
the variables affected by eff(a) to eff(a)[v], and leaves s
unchanged elsewhere. sJaK denotes the resulting state, and
similarly sJ⃗aK for an action sequence. a⃗ is a plan for Π if
G ⊆ I J⃗aK. We denote the summed-up cost of a⃗ by c(⃗a).

A policy for an FDR task is a function π : S 7→ A that
maps states to applicable actions π(s) ∈ A[s]. We denote the
unique run of π on s – the action sequence resulting from
iteratively applying π starting from s – by σπ(s). Note that
learning a policy for FDR tasks is useful, e.g., if (like AS-
Nets) the policy generalizes over all instances of a domain.

3 What is a “Bug” in a Policy?
We now introduce the core definitions of our framework. We
formalize bugs based on testing objectives taking the form of
value functions. We discuss this definition, and we introduce
an extended notion of fuzzing bug which captures the idea of
identifying bugs through comparison to other states.

3.1 Testing Objectives and Policy Bugs
A testing objective defines which property of a given pol-
icy π we will be testing. This can be any desirable prop-
erty, including standard optimization objectives, but also
simpler objectives like reaching the goal wherever possible,
or avoiding a failure condition ϕ wherever possible. As a
generic framework within which to express such a testing
objective, we use value functions V mapping policy/state
pairs to numeric ”goodness” (policy quality) values.

Following standard notations, we denote by V π(s) the
value of applying policy π starting from state s. Better val-
ues according to the testing objective may either be smaller
ones (minimization) or larger ones (maximization). Regard-
less of which is the case, we write V ∗(s) for the optimal
(minimal or maximal) value of any policy in s.

Given this, an alternative policy π′, that improves over π
in terms of the testing objective, exists iff V π(s) ̸= V ∗(s).
Accordingly, we define:

Definition 1 (Bug). A state s is a bug in π under testing
objective V if |V π(s)− V ∗(s)| > 0. We refer to |V π(s)−
V ∗(s)| as the testing-objective gap.

3.2 Examples and Scope
In our experiments, we consider two testing objectives in
FDR classical planning, which we refer to as quantitative-
FDR and qualitative-FDR. The former is the standard ob-
jective to minimize plan cost. We formalize this in terms of
the following value function:

Definition 2 (Testing Objective: Quantitative-FDR). Let Π
be an FDR task with states S, and π a policy for Π. The
quantitative-FDR testing objective is defined as:

V π(s) :=

{
c(σπ(s)) σπ(s) is a plan
∞ otherwise

The testing objective is to minimize the value of this func-
tion. An alternative policy π′ thus is better than π on s –
showing that s is a bug in π – iff it generates a cheaper plan
for s (or any plan at all, if π doesn’t).

In qualitative-FDR, we ignore plan cost, focusing exclu-
sively on whether or not the policy reaches the goal. This
can be formalized as a simple maximization objective:

Definition 3 (Testing Objective: Qualitative-FDR). Let Π
be an FDR task with states S, and π a policy for Π. The
qualitative-FDR testing objective is defined as:

V π(s) :=

{
1 σπ(s) is a plan
0 otherwise

A policy “optimal” with respect to this testing objective
is one that reaches the goal from every solvable state. An
alternative policy π′ shows s to be a bug in π under this
testing objective iff π′ solves s while π does not. This form
of testing makes sense to ascertain goal-reaching capability
as a basic quality of the policy.

While quantitative and qualitative-FDR are our core fo-
cus here, Definition 1 and our theoretical analysis of bug
confirmation (Section 4) apply much more generally. In-
deed the only assumptions needed are that the policy input
is a state (the policy output can be a probability distribu-
tion instead of a single action), and that the testing objective
can be formulated as a value function. This is the case for
every known optimization objective in MDP probabilistic
planning, including also binary objectives like satisfaction
of a goal/failure probability bound which can be formulated
similarly to Definition 3. Further examples are oversubscrip-
tion planning (V sums up rewards over soft goals) and goal-
reaching capability in non-deterministic planning (V mea-
sure the fraction of policy runs that reach the goal).

Failure testing against a temporal failure formula ϕ can be
captured by this simple testing objective:

V π(s) :=

{
1 σπ(s) ̸|= ϕ
0 otherwise



A bug in π here is a state where V π(s) = 0, but there exists a
policy π′ with V π′

(s) = 1: an avoidable failure. Prior work
used only the first half, V π(s) = 0, of this condition.

While Definition 1 and Section 4 apply as stated across
the board, practical concerns may of course differ widely
across planning formalisms and testing objectives. The prac-
tical exploration of policy testing beyond quantitative-FDR
and qualitative-FDR remains a huge topic for future work.

3.3 Discussion
Some words are in order on the expected relation between
the testing objective V vs. the planning/learning objective
used to construct π. If they are the same, then we test
whether π achieves its objective, which is natural. Never-
theless, it will often make sense for the objectives to be dif-
ferent. For example, failure avoidance will certainly not be
the only objective a policy (like a car driver) is trained on.
But testing it makes perfect sense as this is a “must-have”, in
difference to other objectives (like travel time minimization)
that may be harder to test and/or that a learned policy cannot
actually be expected to be optimal on. The same applies to
qualitative-FDR as a must-have proxy for quantitative-FDR
(does the policy find a plan at all?).

Definition 1 may be counter-intuitive in the sense that s
can be a bug even though the action decision π(s) itself is
optimal. What the definition says is “starting from s, some-
thing will go wrong somewhere”. An alternative more local-
ized definition of “bug” would be states s where π(s) is not
part of any optimal policy. Yet this definition would be weak
in the sense that the absence of such bugs does not imply
that π is optimal with respect to the testing objective: policy
decisions must, in general, be coordinated across states.

For example, consider the qualitative-FDR testing objec-
tive. As action costs are ignored here, the localized definition
suffers from what is known as “0-cost cycles”. Consider the
state space g

b←− s1
a←→ s2

b−→ g with goal condition g, and
consider π where π(s1) = a and π(s2) = a. These action
choices each are part of a policy that is optimal accordig to
the testing objective. Yet π never reaches the goal.

In general, if a policy π is free of localized bugs, i.e.,
chooses some optimal action in each state, then the resulting
state values satisfy the Bellman equation. But this implies
optimality only if every fixed point of the Bellman equation
is optimal. The latter is not the case, e.g., for qualitative-
FDR, quantitative-FDR with 0-cost actions, maximization
of goal probability in MDP planning, and (more generally)
generalized stochastic shortest path MDPs (Kolobov et al.
2011). For these reasons, here we consider the stronger defi-
nition of bug as per Definition 1. The problem of fault local-
ization – identifying specific policy decisions, or combina-
tions of policy decisions, causing harm beneath a bug state
s – remains a topic for future work.

3.4 Fuzzing Bugs
In program testing, fuzzing methods modify a given input
trying to exhibit a bug. We adopt this idea by modifying a
given state s0 through random walks trying to find a bug-

state s.1 We define a concept of bug specific to this context.

Definition 4 (Fuzzing Bug). A state s is a fuzzing-bug rel-
ative to s0 if |V π(s)− V ∗(s)| > |V π(s0)− V ∗(s0)|.

Fuzzing is successful if it widens the testing-objective
gap. Obviously, this concept is a sub-class of bugs:

Observation 5 (Fuzzing Bugs are Bugs). If s is a fuzzing-
bug relative to some s0, then s is a bug.

In general, the same is almost true vice-versa:

Observation 6 (Bugs are (almost) Fuzzing Bugs). Every
bug s with non-minimal testing-objective gap |V π(s) −
V ∗(s)| is a fuzzing-bug relative to some s0.

In actual fuzzing algorithms however, there will be restric-
tions on the reachability of s from s0, invalidating Observa-
tion 6 and making ‘fuzzing-bug’ a true sub-concept of ‘bug’.
In any case, the main purpose of Definition 4 here is in our
analysis of bug confirmation, which may be facilitated by
comparing s to s0.

4 Bug Confirmation
Bug confirmation is the problem of deciding, given a state s,
whether or not s is a bug. This problem subsumes (optimal)
planning. Yet we want to apply testing to scenarios where
planning is infeasible (which is where learning a policy π
makes most sense). Hence we need to identify sufficient cri-
teria – test oracles – for bug confirmation: approximations
that can confirm some (though not all) bugs.

Given the extensive amount of research on optimistic
approximations in planning (lower bounds on cost/upper
bounds on reward), a natural idea is to leverage such approx-
imations. We next analyze that possibility, in a generic man-
ner valid across all planning formalisms within our scope.
We briefly discuss the tools we consider. Then we discuss
bug confirmation, first for individual bug states s, then for
fuzzing-bugs where we are comparing s to another state s0.

As previously stated, our findings are mostly nega-
tive. Bug confirmation based on optimistic and pessimistic
bounds boils down to policy-quality improvement. In partic-
ular, optimistic bounds cannot yield any direct added value.
These negative results however pertain to the general case,
and to the exclusive use of such bounds. We conclude the
section by discussing practical matters, introducing the test
oracles we use in our experiments.

4.1 Optimistic/Pessimistic Bounds
To formulate and conduct our theoretical analysis in a man-
ner spanning across different testing objectives, we need a
generic “better than” notation, abstracting from minimiza-
tion vs. maximization. For any value function V , we denote:

Definition 7 (Generic “Better Than” Notation).

V (s) ≺ V (s′) :iff
{

V (s) < V (s′) min objective
V (s) > V (s′) max objective

1The start state s0 here can be an arbitrary state (recall that we
denote the initial state with I), e.g. generated by fuzzing before-
hand which we do in FDR planning as described in Section 5.



V ∗(s) H(s) V π(s)

|H(s)−V π(s)|

|V π(s)−V ∗(s)|

Figure 1: Illustration of Proposition 8, for minimization ob-
jectives (smaller is better).

That is, V (s) ≺ V (s′) iff V (s) is better than V (s′). We
use ⪯, ≻, and ⪰ accordingly.

The value function approximations we consider are:

• Optimistic bounds h, where h(s) ⪯ V ∗(s) for all s.
• Pessimistic bounds H , where V ∗(s) ⪯ H(s) for all s.

For quantitative-FDR, optimistic bounds are the admissible
heuristic functions deeply investigated in classical planning
(e.g., Haslum and Geffner 2000; Edelkamp 2001; Helmert
and Domshlak 2009; Helmert et al. 2014; Pommerening
et al. 2015). For qualitative-FDR, optimistic bounds corre-
spond to dead-end detection (setting h(s) = 0 if s is rec-
ognized as a dead-end, and to 1 otherwise), which has also
been deeply addressed (e.g., Hoffmann, Kissmann, and Tor-
ralba 2014; Pommerening and Seipp 2016; Steinmetz and
Hoffmann 2017). Some optimistic bounding methods be-
yond classical planning exist (e.g., Domshlak and Mirkis
2015; Trevizan, Thiébaux, and Haslum 2017; Klösner et al.
2021). Pessimistic bounds for all testing objectives can be
taken from sub-optimal (satisficing) planning methods.

Our criteria below also use the policy value V π(s). This
is trivial to obtain for quantitative-FDR and qualitative-FDR
– just execute the policy. In probabilistic settings, V π(s)
can be approximated statistically through sample runs. For
the purpose of our analysis, we will assume that V π(s) is
known, abstracting from the statistical imprecision.

4.2 Bug Confirmation via Bounds
Given that s is a bug iff its testing-objective gap |V π(s) −
V ∗(s)| is greater than 0, what we need to derive is a lower
bound 0 < L ≤ |V π(s) − V ∗(s)| on that gap. It is easy to
see that the only possibility for doing so, based on bounds h
and H , is the following:

Proposition 8 (Bug Confirmation). If H(s) ⪯ V π(s), then
L := |V π(s)−H(s)| satisfies L ≤ |V π(s)− V ∗(s)|.

Proof. This simple result holds true because (i) V ∗(s) ⪯
H(s) by definition of H and (ii) H(s) ⪯ V π(s) by prereq-
uisite, so H(s) lies in between the two numbers whose dis-
tance we want to lower-bound. Figure 1 illustrates this.

Importantly, observe that we need both (i) and (ii). For
(i), if our approximation of V ∗(s) is not guaranteed to be
pessimistic, i.e., if H(s) ≺ V ∗(s) is possible, then the dis-
tance L = |V π(s)−H(s)|may be arbitrarily larger than the
testing-objective gap |V π(s) − V ∗(s)|. Note that, in partic-
ular, we cannot use an optimistic approximation h(s). Simi-
larly for (ii), if our pessimistic approximation is worse than
the policy, i.e., V π(s) ≺ H(s), then L may be arbitrarily
larger than the testing-objective gap.

In short, the only possibility to use optimistic and pes-
simistic value-function approximations for bug confirmation

is to find a better solution than π. While this may not be sur-
prising (at least not with the benefit of hindsight), we now
turn to the question whether it may help to consider s not
in isolation, but in comparison to another state s0. Unfortu-
nately – and perhaps more surprisingly – the answer is “no”.

4.3 Fuzzing-Bug Confirmation via Bounds
To confirm s as a fuzzing-bug relative to another state s0,
what we need to show is that the value gap widens from s0
to s. As the first step in our analysis, we systematize the
possible cases. We do so by distinguishing the relation be-
tween the size of the policy-value change from s0 to s vs.
the optimal-value change from s0 to s:

Proposition 9 (Fuzzing-Bug Characterization). s is a
fuzzing bug relative to s0 if and only if one of the follow-
ing conditions holds:

(a) |V π(s) − V π(s0)| > |V ∗(s) − V ∗(s0)| and V π(s) ⪰
V π(s0)

(b) |V π(s) − V π(s0)| < |V ∗(s) − V ∗(s0)| and V ∗(s) ⪯
V ∗(s0)

(c) |V π(s) − V π(s0)| = |V ∗(s) − V ∗(s0)| ̸= 0 and
V π(s) ⪰ V π(s0) and V ∗(s) ⪯ V ∗(s0)

Proof. In case (a), V π changes more than V ∗, and V π can
only become worse, so V π must do worse at s than at s0. In
case (b), V π changes less than V ∗, and V ∗ can only become
better, to the same conclusion. In case (c), the changes are
identical but in different directions.

Clearly, one of (a) – (c) must hold, and in each case the
prerequisites on change directions are required, so the case
distinction is exhaustive as claimed.

How to obtain sufficient criteria for Proposition 9?
Clearly, (c) is fruitless as we would need to know the ex-
act change in V ∗ from s0 to s, which will hardly be possible
without knowing V ∗(s0) and V ∗(s) in the first place. Cases
(a) and (b) can be approximated as follows.

For (a), given our assumption that V π can be evaluated
with sufficient precision, the term we need to approximate is
|V ∗(s) − V ∗(s0)|. Specifically, we need our optimistic and
pessimistic approximations of V ∗ to provide an upper bound
U(s, s0) ≥ |V ∗(s) − V ∗(s0)| on the optimal value change.
This can indeed be obtained, as follows:

Proposition 10 (Fuzzing-Bug Confirmation (a)). Let δ1 :=
|h(s) − H(s0)|, δ2 := |H(s) − h(s0)|, and U(s, s0) :=
max(δ1, δ2). Then s is a fuzzing-bug relative to s0 if
|V π(s)− V π(s0)| > U(s, s0) and V π(s) ⪰ V π(s0).

h(s) h(s0) H(s) H(s0)

V ∗(s) V ∗(s0)

Figure 2: Proposition 10, case V ∗(s) ⪯ V ∗(s0).

Proof. To see that this holds, observe that, if V ∗(s) ⪯
V ∗(s0) (see illustration in Figure 2), then δ1 = |h(s) −
H(s0)| ≥ |V ∗(s) − V ∗(s0)| because h(s) lies “to the
left of” (is better than) V ∗(s) while H(s0) lies “to the



right of” (is worse than) V ∗(s0). If V ∗(s) ⪰ V ∗(s0), then
δ2 = |H(s) − h(s0)| ≥ |V ∗(s) − V ∗(s0)| for symmetric
reasons. Hence U(s, s0) ≥ |V ∗(s) − V ∗(s0)|, from which
the claim follows directly with Proposition 9 (a).

Observe that an upper bound on |V π(s)−V π(s0)| cannot
be derived from h and H in any other way. For any other pair
{l, u} ⊆ {h(s), h(s0), H(s), H(s0)} other than the ones
used in δ1 and δ2, one can easily construct scenarios where
|u− l| < |V π(s)−V π(s0)|, for both cases V ∗(s) ⪯ V ∗(s0)
and V ∗(s) ⪰ V ∗(s0). For example, as can be easily seen in
Figure 2, |h(s)− h(s0)| and |H(s)−H(s0)| do not work.

Let us now consider case (b) of Proposition 9, |V π(s) −
V π(s0)| < |V ∗(s)−V ∗(s0)| and V ∗(s) ⪯ V ∗(s0). Assum-
ing again that we can evaluate V π , what we need is a lower
bound 0 < L(s, s0) ≤ |V ∗(s) − V ∗(s0)| on the optimal
value change, as well as a proof that V ∗(s) ⪯ V ∗(s0).

Consider the two intervals I(s) := [h(s), H(s)] and
I(s0) := [h(s0), H(s0)] limiting the possible V ∗(s) and
V ∗(s0) values (illustrated in Figure 3. If I(s) ∩ I(s0) ̸= ∅,
then V ∗(s) = V ∗(s0) is possible, so we cannot handle that
case. If I(s) ∩ I(s0) = ∅, then we can do the following:

Proposition 11 (Fuzzing-Bug Confirmation (b)). Say that
I(s0) ∩ I(s) = ∅, and let L(s, s0) := |H(s) − h(s0)|.
Then s is a fuzzing bug relative to s0 if |V π(s)−V π(s0)| <
L(s, s0) and H(s) ≺ h(s0).

h(s) H(s) h(s0) H(s0)

I(s0)I(s) L(s, s0)

V ∗(s) V ∗(s0)

Figure 3: Illustration of Proposition 11.

Proof. With H(s) ≺ h(s0), we get V ∗(s) ≺ V ∗(s0). With
I(s0) ∩ I(s) = ∅ and H(s) ≺ h(s0), L(s, s0) = |H(s) −
h(s0)| is exactly the minimum distance between the two in-
tervals, |H(s) − h(s0)| = min{|v − v′| | v ∈ I(s0), v

′ ∈
I(s)} (see Figure 3). Hence L(s, s0) ≤ |V ∗(s) − V ∗(s0)|.
The claim follows from Proposition 9 (b).

Observe again that this is the only possible approxima-
tion based on bounds h and H: our discussion of I(s) and
I(s0) handles both possible cases, so there is nothing else
we can do to obtain a lower bound on |V ∗(s) − V ∗(s0)|.
Therefore, Proposition 10 and Proposition 11 together ex-
haustively cover the space of possibilities for exploiting such
bounds. As previously hinted, unfortunately this space of
possibilities is dominated by Proposition 8:

Theorem 12. Let s0 and s be arbitrary states. Consider the
same bounds h ⪯ V ∗ and H ⪰ V ∗ in all methods. If Propo-
sition 10 or Proposition 11 confirm s to be a bug, then so
does Proposition 8.

Proof. We show that Proposition 10 and Proposition 11 each
imply H(s) ≺ V π(s). Therefore, if they are satisfied, then
s also satisfies Proposition 8 for the considered pessimistic
bound. Assume for contradiction that H(s) ⪰ V π(s).

Consider first Proposition 10. By assumption, H(s) ⪰
V π(s); the second condition of Proposition 10 gives
V π(s) ⪰ V π(s0); since U(s, s) is non-negative by defini-
tion, the first condition entails that |V π(s) − V π(s0)| > 0,
so the inequality in our previous observation is actually strict
(V π(s) ≻ V π(s0)); and finally V π(s0) ⪰ h(s0) since h op-
timistically bounds V ∗. We arrive at the following chain of
relations: H(s) ⪰ V π(s) ≻ V π(s0) ⪰ h(s0). Therefore,
|V π(s)−V π(s0)| ≤ |H(s)−h(s0)|. Since |H(s)−h(s0)| is
exactly δ1 in the claim of Proposition 10, and δ1 ≤ U(s, s),
we conclude that |V π(s)− V π(s0)| ≤ U(s, s). This contra-
dicts the condition of Proposition 10.

If Proposition 11 is satisfied, its prerequisite connects
V π(s0) and V π(s) through the following chain of relations:
V π(s0) ⪰ h(s0) because h is optimistic; h(s0) ≻ H(s)
per prerequisite of Proposition 11; H(s) ⪰ V π(s) per our
assumption. Overall, we get V π(s0) ⪰ h(s0) ≻ H(s) ⪰
V π(s) and hence |V π(s)−V π(s0)| ≥ |H(s)−h(s0)|. Now,
as argued in the proof of Proposition 11, the minimum dis-
tance L(s, s) between the intervals I(s0) and I(s) is exactly
|H(s) − h(s0)|. Put together, we get |V π(s) − V π(s0)| ≥
L(s, s), which is a contradiction to the prerequisite of Propo-
sition 11.

4.4 Discussion and Practical Special Cases
While it is disappointing that the use of optimistic and
pessimistic bounds boils down to finding a pessimistic
bound better than V π(s), of course that can be a practical
method. Plan-quality improvement has been investigated in
some depth in classical and probabilistic planning already
(e.g., Tesauro and Galperin 1996; Bäckström 1998; Do
and Kambhampati 2003; Chang, Givan, and Chong 2004;
Nakhost and Müller 2010; Siddiqui and Haslum 2015). Any-
time planning methods can be used for this purpose too. An-
other interesting option are branch-and-bound and bounded-
suboptimal searches, pruning against V π(s).

In our implementation and experiments, we address FDR
planning, with the quantitative-FDR and qualitative-FDR
testing objectives. We explore two plan-quality improve-
ment methods in this context. First, we leverage the Aras
tool (Nakhost and Müller 2010) which performs well and
is comparatively easy to connect to. If Aras manages to
improve the plan returned by a policy (i.e., the policy run
σπ(s)) then s is a quantitative-FDR bug in π. We refer to this
method as the Aras oracle. Second, we implement a simple
new plan-quality improvement method leveraging the fact
that we have a policy π at hand. We run a depth-first looka-
head search up to depth d, and we run π on each leaf state t
of that search. If an alternate plan (path to t and run of π on
t) is cheaper than σπ(s), then s is a quantitative-FDR bug
in π. We refer to this method as the Lookahead oracle. We
also experiment with a qualitative-FDR version of this ora-
cle, detecting a bug if π does not reach the goal from s, but
does reach the goal from some leaf state t.

Beyond plan-quality improvement, the second major pos-
sibility is to consider special cases of planning, and/or in-
formation about plans other than optimistic and pessimistic
bounds. This can potentially be done in many ways, and re-
mains a large topic for future research. For example, sanity



Algorithm 1: Fuzzer for FDR planning.
1 P := {I};
2 while |P | < N and runtime ≤ T do
3 s0 := uniformRandom(P );
4 l := uniformRandom({1 . . . L});
5 s := s0;
6 for i = 1 . . . l do
7 A := A[s] \ {a | hmax(sJaK) =∞};
8 if PolQualBias then
9 a := policyQualityBias(A);

10 else
11 a := uniformRandom(A);
12 s := sJaK;
13 if NoveltyFilter then
14 if novelty(s, P ) ≤ D then
15 P := P ∪ {s};
16 else
17 P := P ∪ {s};

18 return P ;

testing may consider only states for which V ∗ is known; or it
may be possible to adapt ideas developed in software testing
for scenarios where the correct program output is not known.

In our experiments, we explore two methods applicable
to the special case where all actions are “at least undoable”
(Daum et al. 2016), i.e., we can repair any negative effects an
action may have. In this case, a plan exists for every state so
that policy failures are bugs and qualitative-FDR bug confir-
mation trivializes. We refer to this as the UndoQual oracle.
For quantitative-FDR bugs, we leverage the action sequence
a⃗ leading from s0 to s. In the special case of undoability
where each action has a corresponding inverse action, one
possible plan for s is to go back to s0 and use π from there.
Hence, if V π(s)−V π(s0) > c(⃗a), then we know s is a bug.
We refer to this as the InvQuant oracle.

5 Fuzzing Methods
In our implementation of action-policy testing for FDR plan-
ning, we employ fuzzing methods to automatically gener-
ate test states s. Algorithm 1 shows the pseudo-code. Recall
here that A[s] denotes the set of actions applicable to s, and
sJaK denotes the state resulting from applying a to s.

The algorithm structure is straightforward: we iteratively
build up a test-state pool P of size N by random walks of
maximal length L, starting from a state s0 already in the
pool. We choose actions either with a policy quality bias or
uniformly, ignoring actions whose outcome state is easily
shown to be unsolvable and hence not of interest to policy
testing. We add the new state s either if it passes a novelty
filter or without any filter. The time limit T is used to cover
cases where reaching |P | = N would take too long (or is
actually impossible given the novelty filter).

The policy quality bias, switched on by setting the
Boolean flag PolQualBias, assigns each action a ∈ A a
weight weight(a), and obtains a probability distribution

by normalizing these weights to sum up to 1. We define
weight(a) as the length of σπ(s) if that reaches the goal. If
σπ(s) does not reach the goal, we pass sJaK to pool insertion
(i.e., lines 13 – 17), but set weight(a) := 0 to avoid contigu-
ous bug-state regions (which are less interesting than diverse
bugs), and to avoid contiguous dead-end state regions in do-
mains where dead-ends exist.

The optional novelty filter, switched on by setting the
Boolean flag NoveltyFilter, biases the pool towards states
with a high degree of novelty in the sense of Lipovetzky and
Geffner (2012; 2017). Namely, we define novelty(s, P ) as
the size of the smallest tuple t of variable values true in s
that is not true in any s′ ∈ P . If D = 1, this means that ev-
ery new state s in the pool must contain a variable value not
added before; if D = 2 then s must contain a new variable-
value pair; and so forth. The test pool is thus forced to be
more diverse, covering different aspects of the state space.

6 Experiments
Our techniques are implemented on top of NeuralFD (Fer-
ber, Hoffmann, and Helmert 2020), which itself is an exten-
sion of FD (Helmert 2006). For the Aras oracle, we con-
nect to the plan-quality improver Aras (Nakhost and Müller
2010) by a sub-process (Aras cannot be easily merged into
NeuralFD as the underlying FD versions are very differ-
ent). The action policies we evaluate our techniques on are
learned with ASNets (Toyer et al. 2018, 2020) (see details in
Section 6.1 below). We connect the original ASNets source
code to NeuralFD using a Python process within C++; the
overhead incurred by that connection is negligible.2

Our experiments compare five oracles, of which three are
for quantitative-FDR (Aras, Lookahead, InvQuant) and two
for qualitative-FDR (Lookahead, UndoQual). These oracles
have complementary strengths in theory, and our evaluation
shows how they compare in practice. We furthermore com-
pare the four fuzzer variants resulting from the two options
PolQualBias and NoveltyFilter. Each option constitutes an
advanced method (switch on), for which our results show
improvements over the respective baseline (switch off).

ASNet policies are large, and are slow to evaluate: typ-
ically ≥ 0.2s for each call on our benchmarks, which be-
comes significant as policy runs often have 100s of steps.
We hence fix the search depth d in the Lookahead oracle
to 2 (avoiding too many leaf states to run ASNets on). For
fuzzing, we set the time limit T to 5 hours and the maximum
pool size to N = 200. We fix the maximum walk length L
to 5, which worked well across benchmarks. We fix the nov-
elty filtering level D to 2, as D = 1 was too radical in many
cases, while D > 2 is too expensive. For running the oracle
on the pool, we set a time limit of 10 hours (across all pool
states). Each configuration is executed with a memory limit
of 16 GB on a cluster with AMD EPYC 7543 processors.

6.1 Benchmarks and ASNet Policies
The “benchmarks” required for our research encompass not
only planning domains and instances, but also policies for

2Our code, the benchmarks, and the ASNet policies are avail-
able at https://doi.org/10.5281/zenodo.6323289



those. Here we contribute an initial benchmark collection,
that may serve towards a joint benchmark basis for policy
testing and other analysis methods (verification, explana-
tion, . . . ) in the planning community.

We focus on ASNets as a recent and competitive method
to learn action policies in PDDL planning benchmarks.3 As
testing is of interest primarily for policies π that have a cer-
tain level of quality, for the evaluation of our testing algo-
rithms we exclusively consider benchmark instances solved
by π (executing π in the initial state reaches the goal); and
we focus on domains with high policy coverage, i.e., where
π solves a large fraction of instances. Our collection includes
(a) policies trained by the original authors of ASNets, as well
as (b) additional policies we trained ourselves.

Regarding (a), Toyer et al. (2020) train ASNet policies
for three classical-planning domains, namely Blocksworld,
MatchingBlocksworld, and Goldminer. Their policies for
Goldminer perform very badly (0 test-set coverage), so
we ignore that domain. For Blocksworld and Matching-
Blocksworld, we included into our benchmark set the exact
policies trained by Toyer et al.

For (b), we ran ASNet training on a broad range of IPC
domains, using the original ASNets machinery and hyper-
parameters. We selected the domains with best policy cov-
erage. As two of our oracles are specialized to undoable
actions, we first experimented on such domains, for which
we obtained high-coverage policies in Gripper, Satellite, Sc-
analyzer, Transport, and Visitall. We include Floortile as a
domain that contains dead-ends, thus contributing this kind
of structure to the benchmark basis (along with Matching-
Blocksworld). We finally include Spanner from the IPC
learning track, which also contains dead-ends, but where
learning a simple trick suffices to avoid those. This list of
domains is presumably not exhaustive (one can presumably
learn high-coverage ASNet policies in more IPC domains),
but provides a solid basis for our evaluation purposes.

6.2 Results
Table 1 shows our evaluation of testing results as a function
of oracle and fuzzer configuration. Consider first part (A) of
the table, which gives statistics for the benchmark domains.
The ASNet policies have perfect policy coverage in Gripper,
Scanalyzer, and Spannner; they are weak but non-trivial in
MatchingBlocksworld and Storage; they achieve substantial
coverage in the other domains. Remember that in our evalu-
ation we consider only the solved benchmark instances.

Part (B) of Table 1 gives statistics about the pools P of test
states returned by the fuzzer. For our purposes here, what
matters is that the pools are adequate to evaluate qualitative-
FDR and quantitative-FDR oracles. The former apply only
to s ∈ P not solved by π (where σπ(s) is not a plan), where
they try to show that a plan exists; the latter apply only to

3ASNets output a probability distribution P over all actions. We
obtain our deterministic policy decisions π(s) from this by select-
ing the highest-probability applicable action, argmaxa∈A[s] P (a).
Furthermore, we exclusively consider ASNets whose input is the
state, not Toyer et al.’s variants taking also heuristic values and/or
action history (such extensions of our framework are future work).

s ∈ P solved by π, where they try to show that σπ(s) is sub-
optimal. As Table 1 shows, the number of unsolved s ∈ P
is sufficient everywhere, except in Gripper where all pool
states are solved. The number of solved s ∈ P is small in
MatchingBlocksworld, Floortile, Spanner, and VisitAll. Set-
ting PolQualBias=OFF, this improves. The resulting evalua-
tion data (parts (C) – (E) of Table 1) are similar, confirming
the observations stated what follows.

Part (C) of Table 1 evaluates the oracles by their recall,
the fraction of unsolved (solved) pool states s ∈ P identi-
fied to be qualitative-FDR (quantitative-FDR) bugs. For the
qualitative-FDR oracles, note first that, on those domains
where the UndoQual oracle is applicable, it is actually per-
fect – all states are solvable so s is a bug iff π does not reach
the goal. For each of the three other domains in our collec-
tion, we implemented a domain-specific perfect oracle (de-
ciding whether or not a state is solvable), allowing us to in-
clude perfect-oracle data throughout. The Lookahead oracle
falls behind the perfect oracle, although the difference is of-
ten small. No qualitative-FDR bugs are found in Gripper and
Spanner (in Gripper, all s ∈ P are solved so recall among
unsolved states is not applicable). Indeed, the ASNet policy
seems to be able to solve all states in these domains.

Among the quantitative-FDR oracles, InvQuant finds only
few bugs (it’s rarely better to go back to s0 and use π from
there). The other two oracles make a larger computational
investment (using search), which detects more bugs. Aras
often works better, but Lookahead has a large advantage in
Blocksworld and Satellite, and a small one in Scanalyzer.
Computing a perfect oracle (optimal planning) is infeasi-
ble on most of these benchmarks. There are no quantitative-
FDR bugs in Spanner as all plans there are optimal.

Part (D) of Table 1 evaluates the impact of the policy
quality bias in fuzzing, varying the value of the PolQual-
Bias switch while using a best-of oracle (perfect for
qualitative-FDR, union of all oracles for quantitative-FDR).
For qualitative-FDR, we show recall among all s ∈ P , rather
than only among the unsolved s ∈ P , because the latter
would simply be 100.0 in most domains. Intuitively, recall
in P using the perfect oracle measures the frequency with
which the fuzzer generates qualitative-FDR bug states. For
quantitative-FDR, we stick to the previous evaluation of re-
call among solved s ∈ P , measuring the frequency with
which solved states generated by the fuzzer are recognized
by our oracles to be quantitative-FDR bugs. As the data
shows, the policy quality bias tends to improve both frequen-
cies, often dramatically, and with only minor exceptions.

Consider finally part (E) of Table 1, which evaluates the
impact of the novelty filter (using the same oracles and recall
definitions as in (D)). As the data shows, recall is typically
not much affected by the switch. So, as far as the identifi-
cation of bugs is concerned, the random walks as a baseline
have sufficient exploration. The advantage of novelty filter-
ing lies in the diversity of the bugs identified, which is ben-
eficial in terms of broad testing. The fraction of bug states
that contain a unique fact pair is a very direct measure of
this effect, which as expected tends to go up with novelty
filtering. To provide a more semantic perspective, we fur-
thermore measure the number of bug regions, where a “re-



(A) Benchmarks (B) Pool P (C) Oracles Comparison (D) PolQualBias (E) NoveltyFilter

recall (%) recall (%) recall (%) bugs w/ unique
fact pair (%) #bug regions

qualP\Pπ quantPπ qualP quantPπ qualP quantPπ qual quant qual quant
Domain Σ Σπ |P | |Pπ| undo look perf inv look aras off on off on off on off on off on off on off on off on

Toyer et al. (2020) ASNet Policies
Blocksw 30 24 144.6 28.3 100 65.3 100 5.0 49.0 20.1 8.5 64.4 33.8 56.5 64.3 64.4 61.6 56.5 64.2 70.9 96.2 96.4 4.4 7.6 3.4 4.2
MatchBl 51 6 139.3 8.0 – 0.5 1.1 – 8.3 60.0 5.9 1.1 53.5 60.0 4.8 1.1 50.0 60.0 89.4 100 100 100 0.7 0.5 0.5 1.0

Own ASNet Policies on IPC Benchmarks
Floortil 20 14 186.2 1.5 – 0.7 4.6 – 33.7 49.0 4.1 4.6 37.9 49.0 6.1 4.6 50.0 49.0 90.6 91.9 97.6 97.6 0.4 0.4 0.6 0.6
Gripper 35 35 58.3 58.3 0.5 15.2 90.1 0.0 0.0 87.1 90.2 0.0 0.0 87.8 90.2 66.9 78.3 0.0 0.0 18.4 29.2
Satellite 20 16 114.0 9.3 100 88.2 100 1.0 70.5 37.4 16.9 85.7 38.3 74.9 88.7 85.7 70.0 74.9 65.9 72.9 85.3 97.7 4.4 5.2 0.9 2.4
Scanaly 50 50 63.9 19.2 100 40.7 100 0.1 12.3 7.9 4.0 28.5 13.8 16.3 29.0 28.5 15.3 16.3 64.9 73.0 99.0 100 3.3 5.8 1.9 2.0
Spanner 40 40 142.8 2.9 – 0.0 0.0 – 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Storage 30 7 145.3 58.4 100 88.5 100 0.4 13.9 23.4 21.0 44.5 17.1 23.4 51.3 44.5 24.7 23.4 38.8 58.3 98.8 98.3 1.1 7.1 4.9 5.6
Transp 60 24 151.2 51.4 100 97.8 100 1.5 37.1 48.6 17.7 50.9 46.7 48.8 56.2 50.9 46.4 48.8 37.0 58.4 78.7 92.8 1.1 5.7 8.7 14.8
VisitAll 79 21 78.7 3.2 100 19.8 100 2.9 12.2 15.4 79.9 86.9 28.8 23.1 87.1 86.9 26.2 23.1 71.2 81.9 100 100 6.3 9.5 0.5 0.7

Table 1: Average statistics per domain. (A) total number of instances (Σ), number of instances solved by policy (Σπ). (B)
average pool size (|P |), average number of pool states solved by policy (|Pπ|). (C) evaluates the oracles, (D) evaluates the
PolQualBias switch, (E) evaluates the NoveltyFilter switch. Abbreviations: qualitative-FDR (qual), quantitative-FDR (quant),
UndoQual (undo), Lookahead (look), InvQuant (inv), perfect (perf). As indicated, recall for quant is over Pπ; for qual, it is over
P \Pπ in (C), and over P in (D) and (E) (see text). Oracles in (D) and (E) are best-of, i.e., perfect for qual, and union of oracles
for quant (detecting a bug if any of the oracles does). Fuzzer default setting is PolQualBias=ON and NoveltyFilter=ON. Table
entries dashed out “–” mean the method is not applicable, table entries left empty are undefined fractions (division by zero).

gion” is a connected state-space sub-graph of bug states. As
the data shows, the number of distinct bug regions typically
goes up when switching novelty filtering on.
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Figure 4: Number of bugs (top: qualitative-FDR with Undo-
Qual, bottom: quantitative-FDR with Lookahead) as a func-
tion of time for selected Scanalyzer (top) and Blocksworld
(bottom) instances. NoveltyFilter = ON, time limit 48h.

To give a view on the debugging process as a function
of time spent, Figure 4 shows in-depth data. We consider
Blocksworld and Scanalyzer here, where plans are non-
trivial and still the ASNet policies have (almost) perfect
coverage. We interleave fuzzing with oracle evaluation here,
calling the oracle each time a new state is added to the pool.

As the data shows, the runtime overhead of the policy
quality bias means that it takes a longer time until the first

bugs are found. But given enough time, the biased method
tends to work better thanks to its higher bug frequency.
The time investment for debugging is substantial – it takes
hours rather than seconds to obtain a meaningful result – but
seems adequate given high user interest in policy certifica-
tion. Also, for policies faster to evaluate than ASNets, the
effort for debugging will reduce accordingly.

7 Conclusion
Action policies are gaining traction for decision-making in
dynamic environments, and techniques to gain trust in such
decisions are becoming increasingly important. Testing is
one natural means to do so, but has so far been largely ne-
glected in the planning community. Here we provide a gen-
eral framework, an analysis of test-oracle design via bound-
ing techniques, and an implementation and empirical evalu-
ation yielding insights into algorithm variant behavior.

We view this as a first step towards an important sub-area
of planning research. Our work lays the basis for deeper in-
vestigations of oracle design (e.g., drawing on methodolo-
gies from software testing), fuzzing methods (e.g., exploring
biases based on heuristic functions), fault localization (e.g.,
trying to identify sub-optimal actions in scenarios without
0-cost cycles), and ultimately targeted re-training.
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