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ABSTRACT

As software development teams adopt DevSecOps practices, appli-
cation security is increasingly the responsibility of development
teams, who are required to set up their own Static Application
Security Testing (SAST) infrastructure.

Since development teams often do not have the necessary in-
frastructure and expertise to set up a custom SAST solution, there
is an increased need for cloud-based SAST platforms that operate
as a service and run a variety of static analyzers. Adding a new
static analyzer to a cloud-based SAST platform can be challenging
because static analyzers greatly vary in complexity, from linters
that scale efficiently to interprocedural dataflow engines that use
cubic or even more complex algorithms. Careful manual evaluation
is needed to decide whether a new analyzer would slow down the
overall response time of the platform or may timeout too often.

We explore the question of whether this can be simplified by
splitting the input to the analyzer into partitions and analyzing the
partitions independently. Depending on the complexity of the static
analyzer, the partition size can be adjusted to curtail the overall
response time. We report on an experiment where we run different
analysis tools with and without splitting the inputs. The experi-
mental results show that simple splitting strategies can effectively
reduce the running time and memory usage per partition without
significantly affecting the findings produced by the tool.
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1 INTRODUCTION

With the increasing popularity of DevSecOps development prac-
tices, Static Application Security Testing (SAST) shifts further to
the left in the software development life-cycle and becomes the
responsibility of developers rather than security experts. This cre-
ates a growing demand for easy-to-use solutions. Many develop-
ment teams do not have the capacity or expertise to configure and
maintain their own static analysis infrastructure and prefer SAST
platforms that offer a variety of static analyses on demand. Open-
source platforms, such as the Software Assurance Marketplace
(SWAMP) [30] or ShipShape [49], and their commercial alternatives
offer a convenient abstraction. They provide a simple interface
through which developers submit code and build artifacts (in their
languages of choice) and receive recommendations on how to im-
prove the code. Internally, such cloud-based SAST platforms may
employ a variety of static analysis tools, such as [4, 12, 36, 43, 46, 52].

SAST platforms typically are run as a cloud-based service, and
the individual analysis tools are containerized and instantiated
on-demand on cloud-based machines. Developers expect such a
SAST platform to handle inputs (codebases) of arbitrary complex-
ity, and still deliver results within a certain time window. This is
especially true for customers that integrate SAST platforms in their
continuous integration and deployment (CI/CD) pipelines.

To maintain a predictable response time, SAST platforms face
the challenge that they need to be able to scale to different sizes
of inputs, and that, every time they add a new analysis tool, they
have to ensure that the new tool does not slow down the response
time for existing customers.

Vertical scaling by adding more memory or faster machines is
not a cost-effective solution to the risk of running out of time or
space when analyzing complex inputs. Provisioning machines large
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enough to handle the most complex analysis inputs would make
the service unnecessarily expensive for customers that analyze
smaller and simpler codebases. In the cloud, a large number of
small machines is significantly less expensive than a small number
of high-performance machines [50]. Moreover, since many SAST
tools have superlinear time complexity [36, 44], even the most
powerful machine will eventually not suffice. Much research has
been conducted on adding various optimizations to improve the
scalability of specific analysis engines, such as summarization of
method calls [3, 44, 48], caching and reuse of partial results from
prior analyses [2, 36], and incremental analysis [13, 55]. However,
when operating a SAST platform, modifying the individual tools
may not be an option because the tools might be proprietary or
maintaining forks with custom modifications may be too costly.

Thus, a horizontal scaling strategy to distribute and balance the
analysis load is still needed. Horizontal scaling needs to split up
inputs into pieces such that each analysis tool employed by the
platform can handle its input within the expected response time.
The different pieces can then be analyzed on parallel instances of a
given analysis tool. Such a horizontal scaling can be configured per
analysis tool, but without modifying the tool itself. More complex
tools can be configured to handle smaller pieces of code than light-
weight tools to ensure that the overall latency of the platform does
not change when a new complex tool gets added.

In this paper, we present an approach to horizontally scale anal-
ysis tools in a static analysis platform. Our approach takes as input
a program and a bound for the size of code that should be analyzed
by each single machine. It then employs a configurable splitting
strategy to split the input program into partitions such that the
amount of code in each partition is below the provided bound. We
evaluate how this splitting process affects the accuracy of different
static analysis tools and how the computational cost of analyzing
partitions in parallel relates to the cost of analyzing the entire input
program.

Splitting code into partitions comes with several challenges. The
first challenge is that information may be lost because dependent
code fragments are placed in separate partitions. This may impact
the precision and recall of static analysis tools. For example, a
real defect arising from the interaction between two classes may
become a false negative if those classes end up in different parti-
tions. Similarly, the evidence that a vulnerability has been correctly
mitigated may become invisible when defect and mitigation split
across partitions, yielding a false positive. This leads to our first
research question; RQ1. What is the impact of splitting a program
and analyzing the partitions in isolation on a tool’s accuracy?

The second challenge when splitting code into partitions is that
the complexity of static analysis may not be tied just to the size
of the code. For example, data-flow analysis is cubic in the size of
data-flow facts that are tracked [45]. That is, if data-flow facts are
not evenly distributed across the program, splitting may not reduce
the overall time or memory consumption of data-flow analysis if
all facts end up in the same partition. Other analysis techniques,
such as bi-abduction used by INFER [11], may require a different
type of partitioning since their complexity is not tied to data-flow
facts. Hence, we cannot guarantee that analyzing a partition uses
less time or memory than analyzing the original program. So our
second research question is RQ2. How do static analyzers perform
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on the partitions compared to the original program in terms of time
and memory usage?

A third challenge is to find a splitting strategy that works for
different kinds of static analysis tools. Splitting strategies may have
different complexities for static analysis tools targeting different
languages. E.g., identifying the direct dependencies of a Java class
file is roughly constant since it is sufficient to look at the constant
pool [9]. In Python, however, one has to iterate over the entire
syntax tree of a file to determine its dependencies. A splitting strat-
egy that takes dependencies into consideration is computationally
more expensive for Python than for Java. Thus, our third research
question is RQ3. What kinds of static analysis tools would benefit
from splitting strategies discussed in the paper?

To answer these three research questions, we implement a split-
ting approach that works with two different strategies to create
partitions. The first strategy, SIZELIMITING, naively splits the input
program into partitions based on an upper bound S on the number
of files (or classes) per partition. Sorted files in lexicographical order
are added to a partition until this bound S is reached and then, a
new partition is started. The second strategy, SPLITMERGE, uses
dependency information between the files of the input program to
create partitions that include the necessary dependencies of a file.
In S1ZELIMITING, all partitions are disjoint, while in SPLITMERGE,
partitions can overlap.

We apply these two splitting strategies to a set of benchmark
programs and analyze the resulting partitions with the static anal-
ysis tools RaPID [16] and INFER [11]. We evaluate the impact of
both splitting strategies over non-splitting on these analysis tools
in terms of reported findings and computational performance.

The contributions of this paper are as follows:

e We motivate why input splitting is a relevant problem for
SAST platforms and why additional research in this area is
required.

e We present experimental results that input splitting can work
in practice with different SAST tools.

e We show that with a proper selection of splitting strategy,
all evaluated SAST tools can benefit from splitting. Yet find-
ing the right splitting strategy depends on the complex-
ity of the used SAST tool. While tools like RapIp and IN-
FER which perform complex analyses benefit most from
dependency-guided-splitting strategy like SPLITMERGE in
terms of reduction in latency, memory consumption and
minimizing the loss of findings, for inexpensive linter-like
or intra-procedural analyses such as Bandit, a naive strategy
like S1ZELIMITING may be more beneficial.

We do not claim that any of the proposed strategies are opti-
mal, nor that splitting is the only way to increase the maximum
tractable problem size. Instead, this evaluation demonstrates how
a lightweight splitting strategy can already significantly improve
latency, scalability, and cost-effectiveness of cloud-based SAST plat-
forms. For the future, we envision that such strategies can be used
to reduce the cost of integrating new static analysis tools into a
SAST platform. Moreover, instead of developing and benchmarking
explicit splitting strategies for every new tool, a splitting algorithm
could be generalized to adjust the splitting strategy based on the
number of observed timeouts.
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2 MOTIVATING EXAMPLE

We motivate the need for splitting with an example from the OWASP
Benchmark!. This standard benchmark for Java SAST tools consists
of 2,740 test cases for different types of security vulnerabilities. Each
test case is a single Java file. The benchmark also has an additional
162 Java files that contain common helper classes which are used
by multiple test cases.

The benchmark’s public repository also includes score cards
that show the performance of different SAST tools, an excerpt of
which is displayed in Table 1. For example, the open-source tool
FindSecBugs [41] (v1.4.6) analyzes the benchmark in just over two
minutes and obtains a score of 39.1% — the OWASP score is based on
the precision and recall of a tool’s findings, with 100% for finding all
and only the (known) vulnerabilities and 0% for only false positives
and false negatives. FindSecBugs performs a lightweight analysis
based on type propagation and thus scales linearly with the size of
the program. For other tools in the benchmark’s score cards, we can
see that scalability may be an issue. The tools denoted as SAST-01
to SAST-04 in Table 1 have running times ranging from hours to
days. Delays of such magnitude might be unacceptable for CI/CD
customers.

If we provide a static analysis platform that runs multiple tools
as a portfolio, customers would have to wait for the slowest tool
to terminate before getting the final results (there are usually post-
processing steps, like de-duplication, before the unified results are
returned). This makes it harder to add new tools, like SAST-02,
to the portfolio. Hence, we would like a mechanism to split the
program under analysis into smaller partitions, assuming that the
analysis tool that we want to integrate terminates faster on (most)
partitions so we can analyze these partitions in parallel and return
results without increasing the latency of our analysis platform.

That is, for OWASP, we would like to split the 2,740 test cases
into a set of partitions, each of them bounded by some size S that
ensures our analysis terminates within an acceptable amount of
time. We would also like each partition to contain the subset of the
shared 162 classes that are used by any of the tests in that partition.
Finally, we would like to minimize the number of partitions, since
a very large number of very small partitions would amplify the
impact of per-partition overhead, thus decreasing efficiency.

We illustrate the idea of splitting and the different splitting strate-
gies using the listing in Figure 1, a simplified version of the test
BenchmarkTest@1025. The test contains a CWE22 (Path Traversal)
vulnerability: the value received from request.getHeader is used
in a relative pathname without input validation. An attacker could
provide an input like . ./../etc/passwd to try to access sensitive
data. This test calls helper method doSomething in class TestT,
which is one of the 162 classes that are used by multiple tests. This
method is called by a total of 347 tests in the OWASP benchmark,
such as BenchmarkTest01026 and BenchmarkTest01029.

Suppose the available compute instances (virtual machines) allow
a certain tool to analyze up to 100 files before it risks exceeding
the SLA (Service Level Agreement) time limit. This means we must
split the OWASP benchmark into a set of partitions, each of them
of size at most S < 100.

!https://github.com/OWASP-Benchmark/BenchmarkJava/tree/
53878cc8751e348b63de951b91a6d47cf29121d8/
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public class Thingl implements ThingInterface {
@Override
public String doSomething(String i) {
String r = i;
return r;

}

O 0 N N U R W N

// Simplified version of the OWASP BenchmarkTest 01025
10 public class BenchmarkTest01025 extends HttpServlet {
11 @Override

12 public void doPost(HttpServletRequest req,

13 HttpServletResponse response)
14 throws Exception {

15 String p = req.getHeader("foo");

16 String bar = new Thingl().doSomething(p);
17 File fileTarget = new File("./tmp", bar);
18 response.getWriter ().println("...");

19 }

20 )

Figure 1: Simplified version of an OWASP test that uses a
shared class. The method doSomething is referenced 347 times
in different OWASP tests.

Naive splitting (S1zeLIMITING). First, we discuss a naive strategy
called S1zELIMITING which splits the codebase into non-overlapping
subsets of up to S files each. To ensure determinism, the files are
sorted in lexicographical order with respect to their names. Splitting
is then performed on the sorted files. For the OWASP benchmark,
which has 2,740 test classes and 162 shared classes (for a total of
2,902 files), this may produce, for example, 29 partitions of size 100
and one partition of size 2.

Since method doSomething in class Test1 is called by 347 tests,
we know these tests will be distributed over at least 4 partitions.
That is, all but one of these partitions will not have access to the
implementation of doSomething when running the static analysis.
Depending on the analysis tool and its assumption on missing
methods, this may result in a loss of findings, if the analysis under-
approximates; or it may lead to false positives, if the analysis over-
approximates; or it may crash the tool.

For this example, we need a splitting strategy that is able to
create overlapping partitions to reduce the number of unavailable
code dependencies in each partition. In the following sections we
outline such a strategy, called SPLITMERGE, and then evaluate its
effect on the number of findings compared to the naive strategy and
to not splitting at all. We also evaluate the overhead of computing
partitions and possibly reanalyzing code that is shared between
partitions.

Table 1: Score (based on precision and recall) and analysis
time for several SAST tools on the OWASP Benchmark v1.1.
Data taken from the OWASP Benchmark public repository.

Tool Name OWASP Score | Total Time
FBwFindSecBugs v1.4.6 39.10% 0:02:02
SonarQube Java Plugin v3.14 33.34% 0:05:30
Commercial SAST-01 16.74% 2:55:20
Commercial SAST-02 30.60% 135:23:38
Commercial SAST-03 24.89% 1:52:00
Commercial SAST-04 32.64% 13:54:20
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3 THE SPLITMERGE STRATEGY

We aim to distribute the analysis of a program P, consisting of
n files? F = {fi,.... fu}, by splitting the program into partitions
R={rq,...,rm} (with m < n) such that each partition r; contains
no more than S files and can be analyzed independently with the
target analysis tools. We ensure that the union of all partitions
contains all files (U;r; = F). In general, partitions are not required
to be disjoint, i.e., the same file may be replicated across multiple
ones.

Algorithm overview. SPLITMERGE consists of three steps. Ini-
tially, a partition is created for each file in the codebase, which
includes the file itself and its transitive dependencies up to a dis-
tance k. The distance k is a parameter of SPLITMERGE that allows
to trade-off the size vs the degree of self-containment of the initial
partitions. For the example in Figure 1, for k = 2, the initial par-
titions are {BenchmarkTest@1025, Thing1, ThingInterface} and
{Thing1, ThingInterface}.

The second step — Split — ensures none of the initial partitions
exceeds the maximum size S by splitting any partition exceeding
the size limit, while doing its best effort to preserve the dependency
relations it contains. This step replicates the nodes with high degree
of connectivity in all the split subsets, with the intuition that units
with high connectivity are likely to carry semantic information
shared by multiple subproblems.

Finally, the third step — merge — takes as input a set of partitions
of size less or equal than S and performs two tasks: 1) eliminate
redundant partitions subsumed by others and 2) merge small parti-
tions into larger ones to balance the load and further increase self-
containment. A partition is redundant if it is entirely contained into
another. In our example, the partition {Thing1, ThingInterface}
can be dropped since the remaining partitions entirely cover its files
and local dependencies. Merging small partitions to maximize the
size of their union, constrained by this size being smaller than S, can
be framed as a restricted instance of a bin-packing problem [26, 32].
The optimal solution to this problem converges to the smallest
number of partitions with approximately uniform size S that cover
the input codebase and is expected to balance the analysis load by
assigning one partition to each executor.

In the remainder of this section we will detail each step of SpLIT-
MERGE, with the help of a simplified example.

Running example. Consider an example program P containing
six files: A, B,C, D, E, F. The dependencies among these files are
described in Figure 2a, where a directed edge (x,y) from x to y
denotes that x depends on y (symmetrically, that y is a dependency
of x). Such dependencies can typically be computed statically in
linear time with the size of P, using tools such as JDeps [40] for
Java or Snakefood [10] for Python. In the following, we will refer
to files and vertices, and dependencies and edges interchangeably
via the dependency graph.

Step 1: Initial partitions. This step produces an initial set of
partitions of the program P aiming at preserving local dependencies.
Given a program P composed of a finite set of files F = {fo, f1,... }
and a neighborhood radius k > 0, Alg. 1 constructs for each file a

2In this paper we focus on files as the elementary units to partition for analysis, which
is a suitable setting for Java and Python. Our splitting strategy can in principle be
applied to other language-specific units.
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(b) Dependency graph of P augmented with transitive relations up
to radius k = 2 (red dashed edges).

Figure 2: Dependency graphs of P.

partition including the file itself and its neighbors up to distance
k. A large value for k makes the algorithm more conservative in
preserving dependency information. However, it also increases
redundancy and the likelihood to produce partitions larger than the
size limit S. In Alg. 1, after computing the dependency graph, the
first loop augments the dependency relation to include edges linking
a vertex to its neighbors up to distance k, while the second loop
builds one partition per vertex including it transitive dependencies
up to distance k. For a sparse enough dependency graph with n
vertices and k << n, which is a common situation in practical
systems where coupling should be minimized, the algorithm runs
in nearly ©(n); the worst case complexity would be O(n®) fork ~ n
and a fully connected graph (by reduction to computing the graph
transitive closure), although it is unlikely for any realistic program
to resemble this situation. The function computeDependencyGraph
returns the vertices and edges of the dependency graph. Each vertex
of the graph corresponds to one file of the program under analysis.
Example. The dependency graph of our example program P is shown
in Figure 2a. After the execution of the first loop in Alg. 1 with
k = 2, the dependency relation is augmented with the transitive
dependencies shown in red in Figure 2b - (A, C) and (E, B). The
resulting initial partitions are thus:

{A,B, C}, {B, C}, {C}, {D, B, C}, {E, A, B, C, D, F}, {F}

Step 2: Split. Some initial partitions may have size larger than
the maximum S. This is especially likely for larger values of the
neighborhood radius k. This step aims at splitting an oversized
partition r; into smaller sets that fit within the size limit. However,
uniformly splitting ; into the minimum number or necessary dis-
joint subsets is likely to delete relevant dependency information.
Instead, we deliberately produce a non-minimal number of subsets
allowing redundancy to preserve dependency information. In par-
ticular, for a partition r; that exceeds the maximum size (|rj| > S),
we sort the vertices in descending degree of connectivity (number
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Algorithm 1: Initial partitions.

Algorithm 2: Split.

Input :Files F = {fy, fi, ...}, neighborhood radius k
Output:Initial partitions R = {ro,r1,... }
(V, E) « computeDependencyGraph (F)
// augment dependency relation
forov € Vdo
neighbors < verticesWithinDistance (v, k)
for n € neighbors do

[

=

6 ‘ E—EU(v,n)
7 end for

s end for

9 // build initial partition
10 R— 0

11 forov € Vdo

12 r— {o}

13 for (v,u) € Edo
14 ‘ r— ruU{u}
15 end for

16 R« RUTr

17 end for

18 return R

of incoming and outgoing edges) and identify two sets of vertices:
high-connectivity, which includes the p (a percentage) of vertices
with the largest degrees of connectivity, and low-connectivity ones,
which includes the rest of the vertices. The underlying intuition is
that files involved with many dependency chains are likely to be
relevant for the analysis of most subsets of r;. Therefore, Alg. 2 first
identifies these two sets and then partitions the low-connectivity
vertices uniformly into small enough subsets to allow adding to
each such subset the high-connectivity vertices. This operation is
formalized in the split function, which is applied on each partition
whose size exceeds S (line 13 handles the corner case of the chosen
p not small enough to ensure splitting all oversized partitions.)
Example. Consider S = 4. The partition {E, A, B,C, D, F} exceeds
this size. In Figure 2b, vertex E has a degree of connectivity 5, B
and C have degree 4, A and D have degree 3, F has degree 1. Let
p = 1/3, E and B are selected as the high-connectivity vertices,
leading to new partitions {E, B, A, C}, {E, B, D, F} as replacement of
{E,A,B,C, D, F} (where vertices with the same degree have been
sorted alphabetically).

Step 3: Merge. The last step of SPLITMERGE reduces the redun-
dancy introduced by the previous steps and computes the final
partition (Alg. 3). Some partitions computed by the first two steps
may be subsumed by others. For example, {B,C} C {A, B,C} in the
partitions for our program P. In these situations, the information
contained in the larger set subsumes the information in any of its
subsets. The subsets can therefore be discarded, without loss of
information (first loop in Alg. 3).

The second part of this step aims at grouping together partitions
for the sake of balancing the analysis load distribution across multi-
ple executors. This can be framed as an instance of the bin packing
problem [32], where a set of items — the partitions — have to fit
within the minimum number of bins of size S. While finding the
optimal solution is NP-hard, many heuristics have been proposed

Input :Augmented dependency graph G = (GT, ET),
partitions R = {ro, r1,...,rn},
fraction of high-degree nodes 0 < p < 1,
maximum size S
Output : Split partitions R" = {rg,r{,... r},},
m>nVr'eR :|r'| <£S
1 forr € Rdo
2 if |r| > S then
3 | Re (R\{r}) usplit(r,p,G,S)
4 end if
5 end for
6 return R

7 Function split(r, p, G, S):
8 (Vr, ET) « extractSubgraph(G,r)
9 V1, < sortByDegreeDesc (V7)

10 /* the p highest degree nodes are replicated
in each subset */
1 pr — I_p . |r|J

12 if p, > S then

w | | pr=lps)

14 end if

15 hdn « [or g, . ..,UTspr] // high-connectivity

16 ldn « [or // low-connectivity

sprtl> ]

17 nSubsets « V;I_;P’J +1

pr
18 divide Idn uniformly into nSubsets parts
{Idno, |dn1, e IdnnSubsetsfl}
19 return

{hdn U ldng, hdn U Idny, ..., hdn U ldn,subsets—1}

to efficiently compute near-optimal solutions [26]. Among these,
we adopted next fit [5], which has a time complexity of O(nlogn)
in the number of partitions n (due to sorting). Although, it may
result in up to twice the optimal number of partitions, its fast exe-
cution time is preferred for the sake of minimizing the maximum
analysis latency. Different algorithms can replace nextFit to trade
off latency for a smaller number of parallel executors.
Example. In our small-size example, the merge phase would result in
the final partitioning already after the redundancy reduction phase,
since any further merging by nextFit would result in an oversized
partition. The final partitions are: {D, B, C}, {E, B, A,C},{E, B, D, F}.
After the three steps of SPLITMERGE, the resulting partitions
satisfy the desired properties: (1) each partition is smaller than
the prescribed size S, i.e., |rj| < S; (2) the union of the partitions
contains all files of the input program, i.e., U;r; = F. In the next
section, we introduce our empirical evaluation on the impact of
splitting strategies in comparison to non-splitting strategies.

4 EXPERIMENTAL EVALUATION

In this section we report on our experiments using SPLITMERGE with
three analysis tools on a portfolio of Java and Python benchmarks.
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Algorithm 3: Merge.

Input :Partitions R = {ro,r1,...,"n},
maximum size S

Output: Merged partitions R’ = {ré, r{, s thh,m<n

1 forr; € Rdo
2 if 3rj e Rst.r; Crjandi# jthen

3 ‘ R« R\ {r;}
4 end if
5 end for

6 return nextFit (R, S)
7
s Function nextFit (R, S):

9 Ts <« sortBySizeAsc (R)
10 R0

11 r— 0

12 fort e Ts do

13 if |r| +|t| < S then
14 ‘ r—ruUt

15 else

16 R’"«— R'Ur

17 re— {t}

18 end for

19 R"«— R'Ur

20 return R’

Our evaluation will revolve around the following three research
questions:

RQ1. What is the impact of splitting a program and analyzing
the partitions in isolation on a tool’s accuracy?

RQ2. How do static analyzers perform on the partitions com-
pared to the original program in terms of time and memory usage?

RQ3. What kinds of static analysis tools would benefit from
splitting strategies discussed in the paper?

4.1 Experimental Settings

Static analysis tools. We used two industrial static analysis tools

with interprocedural analysis capabilities -RAPID [16] and INFER [36].

RariD is a tool developed at AWS that performs IFDS/IDE-based [44]
type-state analysis to detect incorrect usage of cloud-service APIs.
INFER is a static analysis tool developed at Facebook that uses sepa-
ration logic to detect memory-related issues such as null pointer
exceptions, resource leaks, and concurrency race conditions. A
third set of experiments will instead use Bandit [4], a static analysis
tool to find common security issues in Python. Unlike the other
tools in our experiments, Bandit processes each source code file
individually.

Benchmark programs. We use three different benchmark suites
in our experiment:

e the OWASP Benchmark (v1.2) [42] (OWASP), a well-known Java-
based web application designed to evaluate the accuracy, cov-
erage, and speed of automated software vulnerability detection
tools. It contains 2,740 labeled test cases that demonstrate com-
mon web app vulnerabilities, including, e.g., command injection,
weak cryptography, path traversal
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o the Juliet Test Suite For Java [39] (Juliet), created by the NSA’s
Center for Assured Software (CAS) specifically for testing static
analysis tools. It comprises 28,881 test cases that contain vulner-
abilities for 112 different CWEs

e open-source packages from Maven Central [33] (Maven): Starting
from a set of 26,142 open-source Java packages randomly sampled
from Maven, we ran RAPID on all packages and, for each package,
recorded the number of “seeds” (elements in the codebase that
may lead to potential findings). This can be done in linear time.
We filtered out packages with no seeds, since their analysis with
RAPID is very inexpensive. We also removed any packages that
crashed the tool. To make the splitting problem more challenging,
out of the 4,611 remaining packages we selected those with at
least 1,500 classes. That left us with 138 Maven packages.

Baseline and experiments. We evaluate the SPLITMERGE split-
ting strategy in comparison with the naive S1ZELIMITING splitting
strategy described in Sect. 2, and also against two baseline configu-
rations that do not perform any splitting:

o No Splitting, Unlimited Time (NoSplit-UT): no splitting, 16Gb
memory, 24h timeout. This strategy approximates the absence of
latency constraints. We use the findings reported with NoSplit
UT as reference to assess accuracy drops due to splitting.

o No Splitting, Unlimited Memory (NoSp1lit-UM): no splitting, 144Gb
memory, 10 minutes timeout. This strategy imposes the same
timeout we will use for splitting, but allows the analyzers to
use virtually unlimited memory (no tool saturated the available
memory in our experiments).

SPLITMERGE and S1ZELIMITING are allowed 16Gb of memory and
10 minutes timeout. We run all the experiments on Amazon EC2
C5.18xlarge instances (72 vCPUs, 144Gb RAM). We do not limit the
number of cores a tool can use. We use Amazon Linux as operating
system and ulimit to enforce memory limits.

Performance metrics. To evaluate our research questions, we col-
lect the following metrics throughout the experimental campaign:

e total findings: the number of unique findings reported by each
tool, used as a proxy to detect accuracy losses. When different
splitting strategies are applied, we compare the number of find-
ings against the baselines to estimate the impact of splitting.
Notably, a tool may also report false positive findings in either
the baseline or after splitting. In general, we do not have a reliable
means to discriminate between true and false positives and for
the sake of this work we pragmatically assume that, ideally, a
splitting strategy should result in exactly the same set of find-
ings as NoSplit-UT; differences would suggest an impact on the
accuracy of the tool

best possible latency: the longest analysis time for any of the
partitions of the input program. This is the minimum waiting
time for the user, excluding other network and service invocation

latency

total time: cumulative analysis time for all partitions. An index

of the cumulative cost in computation time. Its value is related to

the computational overhead induced by the redundancy allowed

when splitting

o peak heap usage: the maximum Java heap memory used by an
analysis tool written in Java. In our experiment, this metric is
only measured for RApID, which is written in Java
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e peak memory/max resident set size (RSS): the maximum
amount of memory held by the process running an analysis tool
at any time

e No. of part.: the number of partitions produced by a strategy
for a given benchmark

e sum of part. sizes: the sum of storage size for all partitions
produced in an experiment.

Configuration. SPLITMERGE is executed with: maximum partition
size S = 500, neighborhood radius k = 2, and the percentage of
high-connectivity vertices p = 0.1. These configuration values
control the trade-off between latency, total CPU time, maximum
memory, and impact on precision. For the experiments reported
in this paper, we prescribed a maximum allowed latency of 10
minutes and a maximum of 16Gb of memory per tool process and
systematically swept the configuration space to make sure the
selected configuration comfortably allows analyzing a partition
within our prescribed latency and memory limits. We acknowledge
that different latency and resource constraints, benchmarks, and
analysis tools may require different tuning of the parameters.

4.2 Experimental Results

4.2.1 RQ1. What is the impact of splitting a program and analyzing
the partitions in isolation on a tool’s accuracy? We answer this
question by looking at the total findings detected by the analyz-
ers shown in Table 2 reporting on the OWASP, Juliet, and Maven
benchmarks. In the table, X means the analyzer did not terminate
within the given timeout or crashed, thus no results were reported.
On all three benchmarks, SPLITMERGE allows both RAPID and INFER
to detect more findings in comparison to SIZELIMITING.

Regarding accuracy, we take the results of NoSplit-UT as the
baseline for comparison (except for RApPID on Juliet, where this
strategy did not produce a result). On OWASP, SPLITMERGE allowed
RAPID to detect exactly the same number of findings (3,326) as with
NoSplit-UT, without losing accuracy. We also compared the output
of the tool with both strategies: the set of findings is exactly the
same. In contrast, we lost 509 (3,326 — 2,817) findings with the naive
splitting strategy SIZELIMITING, corresponding to 15% (509/3,326)
of the total findings that can be detected by Rapip without splitting.
For INFER, splitting the original code using SIZELIMITING impacts its
recall negatively, as INFER detected much fewer findings compared
with non-splitting strategies (230 vs. 401). In contrast, SPLITMERGE
allowed INFER to detect exactly the same findings as with non-
splitting strategies.

On Juliet, Rapip did not finish the analysis using non-splitting
strategies, which gave us no baseline to assess the impact of split-
ting on its accuracy, besides observing that SPLITMERGE returned
more findings than S1zELIMITING. Similarly to OWASP, splitting also
resulted in loss of findings on Juliet for INFER. It also turns out that
INFER crashed (exited with non-zero return code) when analyzing
the partitions. As shown in Table 3, the crash rate is 2% with Size-
LiMITING and 6% with SPLITMERGE. We conjecture INFER is less
tolerant to absences of dependent classes in comparison to RAPID,
but further investigation is needed.

For the Maven benchmark, we conducted an experiment for each
of the 138 Maven packages separately and aggregated the results
(which show 138 partitions for the no-split strategies corresponding
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to the 138 packages analyzed). From the results on Maven, we can
see that SPLITMERGE has less negative impact on both INFER and
RaAPID’s findings compared to SIZELIMITING, i.e., RAPID only lost
6.7% ((1,193-1,113)/1,193) of the findings using SPLITMERGE, while
it is 17% ((1,193-991)/1,193) using SIZELIMITING. On the other hand,
INFER detected more findings with SPLITMERGE than NoSplit-UT,
as it crashed less frequently (Table 3).

We remark once again that the number of findings is a coarse
proxy to evaluate the differential accuracy, while assessing precision
and recall of the different tools would require scoring each tool’s
output against a ground truth to establish which findings are true
and false, which is beyond the scope of this study.

RQ1 takeaway: Splitting the original program can sometimes
negatively impact a tool’s accuracy. However our experiments
show that smarter splitting strategies like SPLITMERGE can con-
trollably reduce accuracy loss. For very large codebases (e.g.,
Juliet) and strict resource constraints, splitting may be the only
option if we want to retrieve any findings, since the tools do not
scale and thus end up returning no findings at all.

4.2.2 RQ2. How do static analyzers perform on the partitions com-
pared to the original program in terms of time and memory usage?

After evaluating the accuracy loss of splitting, with this research
question, we evaluate analysis time and resource demand. A benefit
of splitting a program and analyzing each partition in isolation is
the possibility of running an instance of the analysis tool on each
partition in parallel, thus reducing the user’s waiting time. The best
possible latency of analyzing partitions is the maximum analysis
time required to analyze any such partitions. On all three bench-
mark suites, both RAPID and INFER achieved much better latency
with splitting strategies on both SAST benchmarks (OWASP and
Juliet) and real-world applications (Maven). Using SPLITMERGE,
the analyzers achieved more than 2x speedup (RapID: 32.3/8.5, IN-
FER: 2.5/1.0) on the Maven packages in comparison to NoSplit-UT.
Since RAPID is written in Java, we also measured the peak heap us-
age from the JVM and observed that with SPLITMERGE, RAPID used
less than 13.7% of the peak heap consumption of NoSplit-UT on
OWASP and 82% on Maven. We also measured the maximum resident
set memory size, which indicates a significant reduction of peak
memory consumption also for INFER.

RQ2 takeaway: Splitting the codebase allows us to analyze
the partitions in parallel. On all three benchmark suites, our
experiments show that splitting significantly reduced the latency
for both analysis tools. Splitting also significantly reduced the
memory required to analyze the benchmark suites compared to
non-splitting.

4.2.3 RQ3. What kinds of static analysis tools would benefit from
splitting strategies discussed in the paper? Comparing the results
of RAPID and INFER, the first observation is that splitting allowed
RAPID to analyze Juliet, which was intractably large for the non-
splitting strategies. We also observed that RAPID is more tolerant
than INFER with partitions that miss dependencies. On OWASP and
Juliet, splitting increased the number of crashes (Table 3), result-
ing in a reduction of the number of findings. On Maven we observed
the opposite effect, where analyzing the 138 packages individually
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Table 2: Comparing both S1zELIMITING and SPLITMERGE to baselines on OWASP, Juliet and Maven. The percentages in the rows
for S1zELIMITING and SPLITMERGE strategies correspond to the reduction (or gain) in the number of findings, total time and
memory usage when compared with NoSplit-UT. Best Possible Latency column shows the speedup achieved with S1zeELimiTiNG
and SPLITMERGE strategies. In the cases where NoSplit-UT failed to give a result within 24 hours, we report the speedup as cox

and the number of findings as N/A.

Total Best Possible Total Time Peak Heap | Peak Memory | No.of | Sum of
Strategy Findings Latency (min) (min) Usage (MB) | Max RSS (MB) | Part. | Part. Sizes
RariD ‘ INFER | RAPID ‘ INFER | RapriD ‘ INFER RariD RariD ‘ INFER (MB)
OWASP
NoSplit-UT 3,326 401 55.5 13 55.5 13 2,215 | 5,940.8 212.2 1 24.8
NoSplit-UM X 401 X 13 X 13 X X 213.6 1 24.8
SIZELIMITING 2,817 230 1 0.01 6.8 0.7 271 | 5,406.8 81.8 10 24.8
(-15%) | (-42%) | (55x) | (130x) | (-87.7%) | (-46.1%) (-87.7%) | (-8.9%) | (-61.4%)
SPLITMERGE 3,326 401 1.4 0.01 8.6 0.9 304 | 5,997.2 79.9 14 25.6
(0%) 0%) | (39x) | (130x) | (-84.5%) | (-30.7%) (-86.2%) | (+0.9%) | (-62.3%)
Juliet
NoSplit-UT X 14,183 X 2.4 X 24.2 X X 2,844.9 1 249.7
NoSplit-UM X X X X X X X X X 1 249.7
SIZELIMITING 7,758 | 12,456 1.6 0.09 101.1 37.1 1,855.7 | 7,098.5 131.5 95 249.7
(N/A) | (-12%) (cox) (26x) (N/A) | (+34.7%) (N/A) (N/A) | (-95.3%)
SPLITMERGE 8,803 | 13,866 6 0.08 185.4 41.1 2,623.6 | 7,933.4 135.8 151 298.7
(N/A) (-2%) (cox) (30x) (N/A) | (+45.5%) (N/A) (N/A) | (-95.2%)
Maven
NoSplit-UT 1,193 31,246 323 2.5 767.4 307.4 14,730.9 17,501 1,776 138 4,205
NoSplit-UM 1,186 | 32,172 10 1.0 521.8 270.3 14,012.0 | 48,802 1,790 138 4,213
SIZELIMITING 991 | 18,087 9.1 1.0 137 190.2 11,483.4 | 16,861 964 778 4,381
(-17%) | (-42%) | (3.5x) | (2.5x) | (-82.1%) | (-38.1%) (-22%) | (-3.6%) | (-45.7%)
SPLITMERGE 1,113 | 31,793 8.5 1.0 543.2 715.1 12,181.7 | 17,182 1,025 2,641 15,756
(-6.7%) | (+1.7%) | (3.8x) | (2.5x) | (-30.3%) | (+132%) (-17.03%) | (-1.8%) | (-42.2%)
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Figure 3: LOC of the 17 open source Python projects with dependency analysis and analysis time used by Bandit.

led to more crashes than grouping all their sources and splitting
them with S1ZELIMITING or SPLITMERGE. However, for most bench-
mark applications, the difference in number of findings with and
without splitting was limited for both RapIp and INFER, while RapID
was much faster in analyzing all subjects, significantly reducing
both the best possible latency (by 73-97% with SPLITMERGE) and
the total computation time (29-84% with SPLITMERGE). Also for
INFER the best possible latency dropped by 60-99%, while the total
computation time remained around the same order of magnitude,
taking into account that the different number of crashes between
NoSplit-UT and SPLITMERGE make it difficult to discern how much
computation time ultimately led to results rather than crashing.

INFER also showed a significant reduction in memory demand, up
to 95% on Juliet.

A worst-case scenario for SPLITMERGE. To better define the
target application scope of a dependency-aware splitting strategy
like SPLITMERGE, we report on an additional experiment using
Bandit [4], a static analysis tool for Python. Bandit processes each
source file independently by building an abstract syntax tree and
inspecting it for error patterns. While the previous experiments
analyzed Java applications, SPLITMERGE is not restricted to a specific
language, provided that the user can specify the elementary code
units to partition (e.g., files, modules, or classes) and can identify
their dependencies. In the case of Python, dependencies between its
classes can be extracted using Snakefood [10] and Importlab [17].
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Figure 4: Time used by dependency analysis compared to time used by Bandit.

Table 3: Timeout, crash and success rates of analysis runs.

Strategy RapiD ‘ INFER | RAPID ‘ INFER | RAPID ‘ INFER
Timeout Crash Success
OWASP
NoSplit-UT 0% 0% 0% 0% 100% | 100%
NoSplit-UM 100% 0% 0% 0% 0% | 100%
SIZELIMITING 0% 0% 0% 20% 100% | 80%
SPLITMERGE 0% 0% 0% 0% | 100% | 100%
Juliet
NoSplit-UT 100% 0% 0% 0% 0% | 100%
NoSplit-UM 100% | 100% 0% 0% 0% 0%
SIZELIMITING 0% 0% 0% 2% | 100% | 98%
SPLITMERGE 0% 0% 0% 6% | 100% | 94%
Maven
NoSplit-UT 0% 4% 0% 24% 100% 72%
NoSplit-UM 0% 4% 0% 22% 100% 74%
SIZELIMITING 0% 0.4% 0% 9.6% | 100% | 90%
SPLITMERGE 0% 1% 0% 16% 100% | 83%

We ran the three tools of the analysis pipeline (Snakefood, Im-
portlab, and Bandit) on 17 popular Python open-source projects’
and recorded the analysis time. Figure 3 shows the lines of code
(LOC, bars) vs analysis time for each program (line). The analysis
pipeline including dependency analysis and Bandit shows, as ex-
pected, very high scalability, taking only about 3 minutes to analyze
tensorflow, the largest program in the set. The breakdown of the
time required for each step of this analysis pipeline is shown in
Figure 4, from which it is evident that dependency analysis takes a
significant proportion of the pipeline time, up to 73% for youtube,
while Bandit only takes a smaller fraction of the pipeline time.

This experiment represents a worst-case scenario for SpLIT-
MERGE—the analysis does not benefit from preserving dependency
information, thus dropping the benefits of SPLITMERGE’s heuris-
tics. To parallelize Bandit’s analysis it would be more effective to
use SIZELIMITING, avoiding the overhead of dependency analysis,

3https://dev.to/biplov/17-popular-python-opensource-projects-on-github-21ae

which, contrary to the case of costlier interprocedural analyses with
RarID and INFER, does not pay off with Bandit’s per-file analysis.

RQ3 takeaway: Our experiments show that splitting is useful
to limit the per-machine resource consumption of static analy-
sis tools and different tools require different splitting strategies.
Inter-procedural analyses benefit most from splitting even with
a naive strategy like S1zELIMITING. For example, splitting the
input codebase allowed RAPID to analyze code much faster than
without splitting. Whereas for INFER, the most prominent benefit
of splitting was the reduction in memory usage. Our experiments
also show that for inexpensive linter-like or intra-procedural
analyses such as Bandit, S1ZELIMITING may be more beneficial
than dependency-guided-splitting strategy like SPLITMERGE.

5 RELATED WORK

SAST platforms. Several SAST platforms in the literature provide
static analysis as a service and present a simple interface to de-
velopers that allows them to run a variety of static analysis tools.
One of the earliest platforms is Review Bot [6], which integrates
FindBugs [18], PMD, and CheckStyle into the code review pro-
cess. Review Bot runs in the code review process on changes small
enough to be reviewed by humans, and the tools are fast linting
tools, so it did not have an immediate need for splitting.

The Khasianal web portal [37] integrates three static analyzers
(FindBugs [18], Safe [21], and Xylem [38]) under a unified service
interface. It focuses on discussing the usefulness of the reported
findings. The tools are evaluated on hand-picked projects in which
scalability is not an issue.

Two more recent platforms are Software Assurance Marketplace
(SWAMP) [30] and Google’s Tricorder [49] (and its open-source
version, ShipShape). These platforms focus on making it easy to
plug in additional analyzers. They provide orchestration as well as
aggregation and management of recommendations. They do not
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focus on how to deal with large inputs. Our splitting approach
is agnostic to the specific SAST platform and could be applied to
Khasianal, SWAMP, or Tricorder/ShipShape as well.

An approach that shares a similar motivation to ours is imple-
mented by Cheetah [15] which integrates several static analysis
tools into an IDE. Cheetah achieves fast response times by gradually
increasing the scope of the analysis: it starts by analyzing only the
method currently being edited in the IDE, then increases the scope
to class, package, and project level. This allows them to deliver
some results early on while gradually increasing the precision if
the user is willing to wait for it. In this paper, rather than grad-
ually increasing the scope until reaching a time limit, we reduce
the scope by splitting—simplifying the input, to get results within
certain resource constraints.

A wide range of static program analysis problems can be viewed
as instances of the Context-Free Language (CFL) Reachability prob-
lem [45], e.g., inter-procedural dataflow analysis [44], control flow
analysis [56], set-constraints [28], specification-inference [8], shape
analysis [45], object-flow analysis [58], pointer and alias analy-
sis [31, 59], and program slicing [24] to name a few. Unfortunately,
the worst case time complexity for solving CFL-reachability prob-
lems is O(n®), which is known as the "cubic bottleneck” [23]. As a
result, highly precise analysis of large-scale software is challenging.
In the literature, most work only focuses on very specific optimiza-
tions to a particular analysis that are not applicable in general.
Splitting input representation. Singh et al. proposed a technique
to speed analysis with Polyhedra domain in abstract interpretation
by partitioning variables into subsets such that the constraints only
exist between variables in the same subset [51]. To mitigate the
path explosion problem in symbolic execution, Trabish et al. [54]
introduced chopped symbolic execution, an approach in which users
can identify unimportant parts in the code, and the symbolic analy-
sis tries to avoid those parts. Barnat et al. [7] propose a distributed
algorithm for model checking LTL-formulas. The algorithm works
by first partitioning and then exploring the state space in parallel.
In model checking based on symbolic state representation, the tech-
nique in [22] partitions BDDs into smaller BDDs (each representing
a subset of states) which are subsequently given to different pro-
cesses. Kumar et al. [29] present a technique for distributed explicit
state model checking to improve run time performance.
Parallel/distributed static analysis. The problem of scaling static
analysis to potentially very large inputs is also discussed in [20]
where the authors present a distributed call-graph construction al-
gorithm designed to run in the cloud. We share the motivation that
static analysis needs to be elastic to scale to very large inputs but our
approach is designed to be agnostic to specific static analysis tools
and techniques. Mendez-Lojo et al. [35] proposed a technique to par-
allelize inclusion-based points-to analysis by formulating it in terms
of constraint graph rewrite rules. Su et al. [53] introduced a parallel
solution to CFL-reachability based pointer analysis by avoiding
redundant graph traversals using data sharing and query schedul-
ing. Rodriguez et al. [47] presented an actor-model-based parallel
algorithm for solving IFDS data-flow problems. Albarghouthi et al.
[1] proposed a framework to parallelize top down inter-procedural
analysis using the MapReduce paradigm. Facebook uses INFER [11]
based on bi-abduction which is modular—generates summaries for
methods in the program and compositional—composes summaries
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at call sites. Nevertheless, as we show in our experiments, even
a modular analysis like INFER does not scale to large or complex
inputs under practical resource constraints. BigSpa [60] provides
a data-parallel algorithm for CFL-reachability based static analy-
sis. Graspan [57] and Grapple [61] are single-machine, disk-based
tools that model specific static analysis problems, taint analysis and
type-state analysis respectively, as transitive closure computation
on graphs.

The above approaches parallelize or distribute the analysis work-
load in a way that is specific to the tool or technique at hand. Most
of them modify the existing tool. In our case, we do not introduce
any changes to the SAST tools; an important design goal is to be
able to add new off-the-shelf tools and update existing tools (as
new versions are released) without having to maintain our own
modified versions of them.

Automated refactoring. The goal of splitting is to break a large
program into smaller units that are sufficiently self-contained to
be analyzed in isolation. This is similar to the refactoring problem
of breaking up a monolithic system into smaller components. An
overview of such refactoring techniques is given in [19]. Recently,
we see approaches based on machine learning (e.g., [14]), dynamic
analysis (e.g., [27]), and static analysis (e.g., [34]). The splitting
problem discussed in this paper is simpler than the problem of
automatically refactoring in the sense that our partitions do not
need to be functioning programs; they just need to to be sufficiently
self-contained for analysis purposes.

Graph partitioning and communities. There is a rich body of
work [25] on graph clustering for community detection in networks
studied as graphs, e.g. social networks, academic citation networks,
and collaboration networks—which might provide a theoretical
grounding for future research. However, to the best of our knowl-
edge this line of work currently focuses on preserving maximal
connectivity, as opposed to our goal of attaining an effective trade-
off between preserving connectivity and load-balancing partitions.

6 CONCLUSION

We discussed how splitting of static analysis inputs can be used to
effectively limit the maximum resource consumption of an analysis
tool. We motivated that this is an important problem when operat-
ing a SAST platform, as adding new analysis tools to the platform
must not increase the maximum latency for existing customers.

Our evaluation shows that the splitting strategy has a significant
impact on the outcome of the static analysis tool and that not
all strategies are suitable for all tools. We showed that, for more
complex (super-linear) static analysis tools, more advanced splitting
strategies are needed to minimize the effect on the reported number
of findings. For inexpensive linter-style tools like Bandit, we see
that the overhead of a complex splitting strategy outweighs the
benefits and that a simple splitting strategy is sufficient.

We believe that, in the future, the process of picking a splitting
strategy and tuning the parameters when adding a tool to a SAST
platform can be fully automated. A tool can be run with different
configurations on regression data to identify the best combination
of strategy and configuration. Also, the configuration parameters
for each tool can be re-adjusted on the fly as the available hardware
improves or the static analysis tools get updated.
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