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ABSTRACT
Formal methods use SMT solvers extensively for deciding formula

satisfiability, for instance, in software verification, systematic test

generation, and program synthesis. However, due to their complex

implementations, solvers may contain critical bugs that lead to

unsound results. Given the wide applicability of solvers in software

reliability, relying on such unsound results may have detrimental

consequences. In this paper, we present STORM, a novel blackbox

mutational fuzzing technique for detecting critical bugs in SMT

solvers. We run our fuzzer on seven mature solvers and find 29

previously unknown critical bugs. STORM is already being used in

testing new features of popular solvers before deployment.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.
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1 INTRODUCTION
The SatisfiabilityModulo Theories (SMT) problem [11] is the decision

problem of determining whether logical formulas are satisfiable

with respect to a variety of background theories. More specifically,

an SMT formula generalizes a Boolean SAT formula by supplement-

ing Boolean variables with predicates from a set of theories. As

an example, a predicate could express a linear inequality over real

variables, in which case its satisfiability is determined with the
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theory of linear real arithmetic. Other theories include bitvectors,

arrays, and integers [28], to name a few.

SMT solvers, such as CVC4 [10] and Z3 [24], are complex tools

for evaluating the satisfiability of SMT instances. A typical SMT

instance contains assertions of SMT formulas and a satisfiability

check (see Figs. 2 and 3 for examples). SMT solvers are extensively

used in formal methods, most notably in software verification (e.g.,

Boogie [8] and Dafny [34]), systematic test case generation (e.g.,

KLEE [18] and Sage [30]), and program synthesis (e.g., Alive [36]).

Due to their high degree of complexity, it is all the more likely

that SMT solvers contain correctness issues, and due to their wide

applicability in software reliability, these issues may be detrimental.

Tab. 1 shows classes of bugs that may occur in SMT solvers. We

restrict the classification to bugs that manifest themselves as an

incorrect solver result. For bugs in class A, the solver is unsound and
returns unsat (i.e., unsatisfiable) for instances that are satisfiable.
These bugs are known as refutational soundness bugs in the SMT

community. Class B refers to bugs where the solver returns sat (i.e.,
satisfiable) for unsatisfiable instances. A solver is incomplete when
it returns unknown for an instance that lies in a decidable theory

fragment. We categorize such bugs in class C. Finally, bugs in class

D indicate crashes where the solver does not return any result.

We call bugs in class A critical for two main reasons. First, such

bugsmay cause unsoundness in program analyzers that rely on SMT

solvers. As an example, consider a software verifier (e.g., Dafny [34])

or a test case generator (e.g., KLEE [18]) that checks reachability of

an error location by querying an SMT solver. If the solver unsoundly

proves that the error is unreachable (e.g., returns unsat for the path
condition to the error), then the verifier will verify incorrect code

and the testing tool will not generate inputs that exercise the error.

Second, it is much harder to safeguard against bugs in class

A than bugs in other classes. Specifically, consider that, when an

instance is found to be sat, the solver typically provides a model,
that is, an assignment to all free variables in the instance such

that it is satisfiable. Therefore, bugs in class B could be detected

by simply evaluating the instance under the model generated by

the solver (assuming that the model is correct). If this evaluation

returns false, then there is a B bug. Bugs in class C are detected

whenever the solver returns unknown for an instance that lies in a

decidable theory fragment, and bugs in class D are detected when

the solver crashes.

Related work. Early work on testing SMT solvers presented

FuzzSMT [14], a blackbox grammar-based fuzzer for generating

https://doi.org/10.1145/3368089.3409763
https://doi.org/10.1145/3368089.3409763
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Table 1: Classes of bugs in SMT solvers. GT stands for ground
truth and SR for solver result.

GT
SR

sat unsat unknown Crash

sat A C D

unsat B C D

syntactically valid SMT instances (from scratch) for bitvectors and

arrays. Since the satisfiability of the generated formulas is unknown,

the main goal of this fuzzer is to detect crashes in solver imple-

mentations (class D). Critical bugs (class A) may only be detected

with differential testing, when multiple solvers disagree on the

satisfiability of a generated SMT instance.

The above idea was recently extended to enable fuzzing string

solvers by a tool called StringFuzz [13]. Similarly to FuzzSMT, String-

Fuzz generates formulas from scratch. In addition, it can transform

existing string instances, but without necessarily preserving their

satisfiability. Consequently, critical bugs in a single string solver

cannot be detected given that the satisfiability of the formulas is

not known a priori—differential testing would again be needed.

Even more recently, there emerged another technique for testing

string solvers [16], which synthesizes SMT instances such that their

satisfiability is known by construction. This ground truth is used to

derive test oracles. Violating these oracles indicates bugs of classes

A and B.

Note that finding bugs in classes C and D does not require know-

ing the ground truth. As a result, any of the above techniques can

in principle detect such bugs as a by-product.

Our approach. In this paper, we present a general blackbox

fuzzing technique for detecting critical bugs in any SMT solver. In

contrast to existing work, our technique does not require a grammar

to synthesize instances from scratch. Instead, it takes inspiration

from state-of-the-art mutational fuzzers (e.g., AFL [5]) and gener-

ates new SMT instances by mutating existing ones, called seeds.
The key novelty is that our approach generates satisfiable instances

from any given seed. As a result, our fuzzer detects a critical bug

whenever an SMT solver returns unsat for one of our generated in-
stances. We implement our technique in an open-source tool called

STORM, which has the additional ability to effectively minimize

the size of bug-revealing instances to facilitate debugging.

Contributions. Our paper makes the following contributions:

(1) We present a novel blackbox mutational fuzzing technique

for detecting critical bugs in SMT solvers.

(2) We implement our technique in an open-source fuzzer
1
that

is already being used for testing new features of solvers

before deployment.

(3) We evaluate the effectiveness of our fuzzer on seven mature

solvers and 43 logics. We found 29 previously unknown

critical bugs in three solvers (or nine solver variants) and 15

different logics.

1
https://github.com/Practical-Formal-Methods/storm

Outline. The next section gives an overview of our approach.

Sect. 3 explains the technical details, and Sect. 4 describes our

implementation. We present our experimental evaluation in Sect. 5,

discuss related work in Sect. 6, and conclude in Sect. 7.

2 OVERVIEW
To give an overview of our fuzzing technique for SMT solvers, we

first describe a few interesting examples of STORM in action and

then explain what happens under the hood on a high level.

In action. One of the critical bugs2 found by STORM was in

Z3’s QF_LIA logic, which stands for quantifier-free linear integer

arithmetic. We opened a GitHub issue to report this bug, which

resulted in an eight-comment discussion between two Z3 develop-

ers on how to resolve it. Note that eight comments (or in fact any

discussion) on how to fix a bug is typically uncommon. From the

GitHub issues we have seen, developers simply acknowledge an

issue or additionally ask for a minimized SMT instance. The issue

was closed but re-opened a day later with more comments on what

still needs to be fixed. The issue was closed for the last time three

days after that. Based on our understanding and explanations by

the developers, this bug was triggered by applying Gomory’s cut

on an input that did not satisfy a fundamental assumption of the

cut. STORM was able to generate an instance that violated this

assumption and led to misapplying Gomory’s cut. The fix in Z3

included changing the implementation of the cut.

STORM detected another critical bug
3
in Z3’s Z3str3 string

solver [12]. According to a developer of Z3str3, the bug existed for

a long time before STORM found it. During this time, it remained

undetected even though Z3str3 was being tested with fuzzers ex-

clusively targeting string solvers [13, 16]. A simplified version of

the SMT instance that revealed the bug is shown on the right of

Fig. 2. (We will discuss it in detail later in this section.)

A third critical bug
4
was found in Z3’s tactic for applying do-

minator simplification rules. The instance that was generated by

STORM and revealed the bug spanned 194 lines. The minimization

component of STORM reduced this instance to 15 lines. A simpli-

fied version of the instance is shown on the left of Fig. 3. (We discuss

it later in this section.) A developer of the buggy tactic asked us

which application generated this instance, thinking that it was a

tool he developed during his PhD thesis. When we mentioned that

it was STORM, he replied “What? Your random generator could have
done my PhD thesis?? &@#%, you should have told me sooner :)”. This
demonstrates STORM’s ability to generate realistic SMT instances

that can be difficult to distinguish from instances produced by client

applications of SMT solvers.

In Sect. 5, we describe in more detail our experience of using

STORM to test both mature solver implementations as well as new

features before their deployment.

Under the hood. We now give a high-level overview of our

fuzzing technique, which operates in three phases. Fig. 1 depicts

each of these phases.

2
https://github.com/Z3Prover/z3/issues/2871

3
https://github.com/Z3Prover/z3/issues/2994

4
https://github.com/Z3Prover/z3/issues/3052
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assert f

check-sat

Phase 1: Seed fragmentation

Seed S

∧

f1

f2 f3

∨

Formula f

f1:F f2:F
f3:T

f:F

Initial pool

Phase 2: Formula
generation

¬f1:T
f2 ∧ f3:F

Construction pool

¬f1 ∧ f3:T

¬(¬f1 ∧ f2):T

assert ¬f2

assert ¬f1 ∧ f3

check-sat

Phase 3: Instance
generation

New instance

¬f2:T

f2 ∨ f3:T

Figure 1: Overview of the three STORM phases.

1 (declare-const S String)
2 (assert (str.in.re S (re.++ re.allchar (re.++

3 (str.to.re "7;") (re.++ re.allchar

4 (str.to.re "aa "))))))

5 (assert (not (str.in.re S (re.union re.allchar

6 (str.to.re "X'jafa ")))))

7 (check-sat)

1 (declare-const S String)
2 (assert
3 (let ((a (str.in.re S (re.++ re.allchar (re.++

4 (str.to.re "7;") (re.++ re.allchar

5 (str.to.re "aa "))))))

6 (let ((b (not (str.in.re S (re.union re.allchar

7 (str.to.re "X'jafa "))))))

8 (let ((c (and (not b) (not a))))

9 (not c))))))

10 (check-sat)

Figure 2: Original seed instance from SMT-COMP 2019 on the left, and simplified instance revealing critical bug in Z3’s Z3str3
string solver on the right.

1 (declare-fun A () Bool)
2 (declare-fun B () Bool)
3

4 (assert (not B))

5 (assert (not (and (not A) B)))

6 (assert A)

7

8 (check-sat-using dom-simplify)

1 (declare-fun A () Bool)
2 (declare-fun B () Bool)
3

4 (assert (and (not B) A))

5

6 (check-sat-using dom-simplify)

Figure 3: Simplified instance revealing critical bug in Z3’s dom-simplify tactic on the left, and logically equivalent instance
not revealing the bug on the right.

The first phase, seed fragmentation, takes as input a seed SMT

instance 𝑆 . For instance, imagine an instance with multiple asser-

tions. Each assertion contains a logical formula, such as 𝑓 in the

figure, potentially composed of Boolean sub-formulas (i.e., predi-

cates), such as 𝑓2 ∨ 𝑓3, 𝑓1, 𝑓2, and 𝑓3 in the figure. Initially, STORM
generates a random assignment of all free variables in the formulas

in 𝑆 . Then, STORM recursively fragments the formulas in 𝑆 into all

their possible sub-formulas. For example, 𝑓 is broken down into 𝑓1
and 𝑓2 ∨ 𝑓3, each of these is in turn broken down into its Boolean

sub-formulas, and so on. The valuation (i.e., truth value) of each

(sub-)formula,𝑇 or 𝐹 , is computed based on the random assignment.

All formulas together with their valuations are inserted in an initial

pool as shown in the figure.

The second phase, formula generation, uses the formulas in the

initial pool to build new formulas. The valuation of each new for-

mula is computed based on the valuations of its constituent initial

formulas. All new formulas with their valuations are inserted in

a construction pool as shown in the figure. For instance, initial

formulas 𝑓2 and 𝑓3 are used to construct a new formula 𝑓2 ∧ 𝑓3.

The third phase, instance generation, uses formulas from both

pools to generate new SMT instances. The reason for having the

two pools is to be able to control the frequency with which initial

and constructed formulas appear in the new instances. Instances

generated during this phase have a different Boolean structure

than the seeds. However, their basic building blocks, that is, the

initial formulas that could not be fragmented further, remain un-

changed. This is what allows STORM to generate realistic instances.

In addition, all new instances are satisfiable by construction.

Therefore, a critical bug is detected whenever an SMT solver

returns unsat for a STORM-generated instance. In such a case,

STORM uses instance minimization to minimize the size of the

instance revealing the bug.

Examples. The left of Fig. 2 shows a seed instance from the

international SMT competition SMT-COMP 2019 [3]. Starting from

this seed, STORM generated the (simplified) instance on the right,

which revealed the critical bug in Z3str3 described above. Z3str3

derives length constraints from regular-expression membership

predicates. The bug that STORM exposed here is that such a length

constraint, which is implied by membership in a regular expression,

was not asserted by the string solver.

It is easy to see that the first asserted formula on the left corre-

sponds to variable a on the right, while the second asserted formula

on the left corresponds to variable b on the right. Therefore, the

seed essentially checks for satisfiability of a ∧ b. On the right, c
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is equivalent to ¬a ∧ ¬b, and the instance checks for satisfiabil-

ity of ¬c, thus, of a ∨ b. This shows that even small mutations to

the Boolean structure of a formula can be effective in revealing

critical issues in solvers. In fact, such mutations can result in trig-

gering different parts of a solver’s implementation, e.g., different

simplifications, heuristics, or optimizations.

This is also evidenced by the example in Fig. 3. The instance

on the left reveals the critical bug in Z3’s dom-simplify tactic

described earlier. It essentially checks the satisfiability of ¬B ∧
¬(¬A ∧ B) ∧ A, which is logically equivalent to ¬B ∧ A. Observe,
however, that the logically equivalent formula, shown on the right

of Fig. 3, does not trigger the bug.

Consequently, the benefit of fuzzing the Boolean structure of

seed instances is two-fold. First, it is effective in detecting critical

issues in solvers. Such issues are by definition far more serious

and complex than other types of bugs, such as crashes, since they

can, for instance, result in verifying incorrect safety-critical code.

Second, fuzzing only the Boolean structure of seeds helps generate

realistic SMT instances. This is confirmed by the above comments

on the tactic bug from the Z3 developer who thought that the

STORM instance was generated by his own PhD tool. This was also

confirmed by other solver developers with whom we interacted.

3 OUR APPROACH
In this section, we describe our fuzzing technique and how it solves

two key challenges in detecting critical bugs in SMT solvers: (1) how

to generate non-trivial SMT instances, and (2) how to determine

if a critical bug is exposed. The latter demonstrates how STORM
addresses the oracle problem [9] in the context of soundness testing

for solvers. Finally, we describe how we minimize bug-revealing in-

stances to reduce their size. This step is crucial for solver developers

as it significantly facilitates debugging.

3.1 Fuzzing Technique
Given an SMT instance as seed input, our fuzzing approach pro-

ceeds in three main phases: (1) seed fragmentation, (2) formula

generation, and (3) instance generation. Seed fragmentation ex-

tracts sub-formulas from the seed. These will be used as building

blocks for generating new formulas in the second phase. Lastly,

instance generation creates new, satisfiable SMT instances based

on the generated formulas, invokes the SMT solver under test on

each of these instances, and uses the solver result as part of the test

oracle to detect critical bugs.

Alg. 1 describes these three phases in detail. Function Fuzz takes

the initial seed S and several additional parameters that bound

the fuzzing process (explained below). As a first step, the function

populates an initial pool Pinit of formulas (line 13) with formula

fragments of the seed S.
To this purpose, function PopulateInitialPool extracts all as-

sertions in the seed and generates a random assignment M , i.e.,

an assignment of values to free variables. In our implementation,

we use a separate SMT solver (i.e., different from the one under

test) to generate a model for the assertions (or their negation if the

assertions are unsatisfiable). Next, we iterate over all predicates

(i.e., tree-shaped Boolean sub-formulas as in Fig. 1) in the seed. We

use assignment M to evaluate those predicates for which the tree

Algorithm 1: Core fuzzing procedure in STORM.
1 procedure PopulateInitialPool(S,Dmax )

2 A← GetAsserts(S)
3 M ← RandAssignment(A)
4 P ← EmptyPool()
5 foreach pred ∈ S
6 if ¬ExceedsDepth(pred,Dmax ) then
7 v← IsTrue(M, pred)
8 P ← Add(P, pred, v)
9 return 𝑃

10

11 procedure Fuzz(S,NC,NM,Dmax ,Amax )

12 // Phase 1: Seed fragmentation

13 Pinit ← PopulateInitialPool(S,Dmax )
14

15 // Phase 2: Formula generation

16 Pconstr ← EmptyPool()
17 while Size(Pconstr ) < NC do
18 f1, v1 ← RandFormula(Pinit, Pconstr)
19 op← RandOp()
20 if op = AND then
21 f2, v2 ← RandFormula(Pinit, Pconstr)
22 f ← AND (f1, f2)
23 v← v1 ∧ v2
24 else
25 f ← NOT (f1)
26 v← ¬v1
27 if ¬ExceedsDepth(f ,Dmax ) then
28 Pconstr ← Add(Pconstr, f, v)
29

30 // Phase 3: Instance generation

31 B← EmptyList()
32 m← 0

33 while m < NM do
34 // Number of generated assertions

35 ac← (RandInt() %Amax ) + 1
36 A← EmptyList()
37 while 0 < ac do
38 f , v← RandFormula(Pinit, Pconstr)
39 if ¬v then
40 // Negation of f to guarantee assertion satisfiability

41 f ← NOT (f )
42 A← Append(A, f)
43 ac← ac − 1
44 // Invocation of SMT solver under test

45 r ← CheckSAT(A)
46 // Test oracle

47 if r = UNSAT then
48 B← Append(B,A)
49 m← m + 1
50 return 𝐵

depth does not exceed a bound Dmax . This valuation v is crucial

for subsequent phases of the fuzzing process, and we add both

the formula pred and v to the initial pool, which is essentially a

map from formulas to valuations. Note that, by fragmenting the

seed, the initial pool already contains a large number of non-trivial

formulas that would be difficult to generate from scratch (e.g., with

a grammar-based fuzzer).



Detecting Critical Bugs in SMT Solvers Using Blackbox Mutational Fuzzing ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Algorithm 2: Depth-minimization procedure in STORM.
1 procedure MinimizeDepth(S,NC,NM,Dmin,Dmax ,Amax )

2 if Dmax ≤ Dmin then
3 return 𝑆

4 D← (Dmin + Dmax )/2
5 B← Fuzz(S,NC,NM,D,Amax )
6 if 0 < Size(B) then
7 Smin ← SelectSeedWithSmallestDepth(B)
8 return MinimizeDepth(Smin,NC,NM,Dmin,D,Amax )
9 return MinimizeDepth(S,NC,NM,D + 1,Dmax ,Amax )

In the second phase, we populate the construction pool Pconstr
by adding NC new formulas of maximum depth Dmax . These for-

mulas are generated randomly by selecting one of two Boolean

operators, logical AND (lines 21–23) and NOT (lines 25–26). Note

that this set of operators is functionally complete, thus allowing us

to generate any Boolean formula. We construct a new formula f by

conjoining two existing formulas (f1 and f2 with valuations v1 and
v2) in the case of AND and negating an existing formula (f1 with
valuation v1) in the case of NOT . Existing formulas are randomly

selected from the pools. Before adding the resulting formula f to

the construction pool, we derive its valuation v from the valuations

of its sub-formulas (lines 23 and 26).

In essence, the second phase enriches the set of existing formulas

by generating new ones without requiring a complete grammar for

all syntactic constructs. Instead, we use a minimal, but functionally

complete, grammar for Boolean formulas. This significantly simpli-

fies formula generation without sacrificing expressiveness. Note

that a separate pool for newly constructed formulas allows having

control over how many of them are used in the instances generated

in the third phase. On the right of Fig. 2, this step is responsible for

generating the formulas on lines 8 and 9 that ultimately amount to

checking the satisfiability of a ∨ b.
Once the two pools are populated, we use them to generate NM

SMT instances that we feed to the solver under test. To assemble

a new instance A, we create up to Amax assertions (ac on line 35)

by randomly picking formulas from the pools. If the valuation of a

selected formula is true, we directly assert it, otherwise we assert its

negation. This ensures that all assertions are satisfiable. Of course,

the same holds for instance A consisting of these assertions in

addition to a satisfiability check. We now leverage this fact when

feeding the SMT instance to the solver under test (line 45). The

oracle reveals a critical bug if the solver returns UNSAT .

3.2 Instance Minimization
In practice, our fuzzing technique often generates bug-revealing

instances that are very large, containing deeply nested formulas

and several assertions. This can considerably complicate debugging

for solver developers.

Adapting established minimization techniques based on delta

debugging [46] might seem like a natural fit for this use case. How-

ever, the special nature of critical bugs complicates this task in

comparison to other classes of bugs, such as crashes. For mini-

mizing crashing instances, it is sufficient to minimize the original

instance (e.g., by dropping assertions) while preserving the crash. In
contrast, for instances that exhibit a critical bug, the behavior that

should be preserved is more involved, that is, the instance should
be minimized such that the buggy solver still returns unsat while
the ground truth remains sat. This requires either satisfiability-
preserving minimizations or a trusted second solver that can act

as a ground-truth oracle by rejecting minimizations that do not

preserve satisfiability. Unfortunately, the only state-of-the-art delta

debugger for SMT instances, ddSMT [40], does not preserve satisfi-

ability. (Note that ddSMT is the successor of deltaSMT [2], which

was used to minimize instances generated by FuzzSMT [14].) More-

over, a second trusted solver is not always available (e.g., for new

theories or solver-specific features and extensions).

To overcome these limitations, we developed a specialized mini-

mization technique that directly leverages the bounds of our fuzzing

procedure to obtain smaller instances (see Alg. 2 for depth mini-

mization). By repeatedly running the fuzzing procedure on a buggy
seed instance, this algorithm attempts to find the minimum values

for Dmax and Amax that still reveal a critical bug. It uses binary

search to first minimize the number of assertions (analogous to

MinimizeDepth in Alg. 2) and subsequently the depth of asserted

formulas. Note that the fuzzing procedure may report multiple

bug-revealing instances, and we recursively minimize the smallest

with respect to the bound being minimized (line 8). Our evaluation

shows that this technique works more reliably than leveraging

ddSMT and a second solver (see Sect. 5.5).

4 IMPLEMENTATION
Seeds. STORM uses the Python API in Z3 to manipulate SMT

formulas for generating new instances. It can, therefore, only fuzz

instances within the logics supported by Z3. In practice, this is not

an important restriction since Z3 supports a very large number

of logics. Moreover, STORM requires seeds to be expressed in an

extension of the SMT-LIB v2 input format [4] supported by Z3. Note

that SMT-LIB is the standard input format used across solvers.

Random assignments. STORM uses Z3 to generate a random

model for a given seed (line 3 of Alg. 1). Note, however, that bugs in

Z3 resulting in a wrong model do not affect our fuzzer. In fact, given

any assignment, our technique just requires correct valuations for

predicates in the initial pool. In theory, computing these valua-

tions is relatively straightforward since the assignment provides

concrete values for all free variables; simply substituting variables

with values should be sufficient for quantifier-free predicates. In

practice, we use Z3 to compute predicate valuations and have not

encountered any bugs in this solver component.

Random choices. Our implementation provides concrete in-

stantiations of functions RandOp and RandFormula from Alg. 1

as follows. RandOp returns AND with probability 50% and NOT
otherwise. Function RandFormula selects a formula from one of

the pools uniformly at random, but with probability 30% from the

initial pool and from the construction pool otherwise.

Incremental mode. Many solvers support a feature called in-
cremental mode. It allows client tools to push and pop constraints

when performing a large number of similar satisfiability queries

(e.g., checking feasibility of paths with a common prefix during sym-

bolic execution). To efficiently support this mode, solvers typically

use dedicated algorithms that reuse results from previous queries;
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in fact, SMT-COMP [3] features a separate track to evaluate these

algorithms. To test incremental mode, STORM is able to generate

SMT instances that contain push and pop instructions in addition

to regular assertions.

5 EXPERIMENTAL EVALUATION
In this section, we address the following research questions:

RQ1: How effective is STORM in detecting new critical bugs

in SMT solvers?

RQ2: How effective is STORM in detecting known critical bugs

in SMT solvers?

RQ3: How do the assertion and depth bounds of STORM im-

pact its effectiveness?

RQ4: How effective is our instance minimization at reducing

the size of bug-revealing instances?

RQ5: To what extent do STORM-generated instances increase

code coverage of SMT solvers?

We make our implementation open source
5
. To support open sci-

ence, we include all data, source code, and documentation necessary

for reproducing our experimental results.

5.1 Solver Selection
We used STORM to test seven popular SMT solvers, which sup-

port the SMT-LIB input format [4] and regularly participate in the

international SMT competition SMT-COMP [3]. Specifically, we se-

lected Boolector [42], CVC4 [10], MathSAT5 [20], SMTInterpol [19],

STP [29], Yices2 [26], and Z3 [24].

In addition to the above mature implementations, STORM was

also used to test new features of solvers. In particular, the develop-

ers of Yices2 asked us to test the new bitvector theory in the MCSAT

solver [31] of Yices2, which is based on the model-constructing

satisfiability calculus [25]. MCSAT is an optional component of

Yices2, which is dedicated to quantifier-free non-linear real arith-

metic. STORM did not find bugs in this new theory of MCSAT, and

the theory was integrated with the main version of Yices2 shortly

after. In our experimental evaluation, it is therefore tested as part

of Yices2.

Moreover, the developers of Z3 asked us to test a new arithmetic

solver (let us refer to it as Z3-AS), which they have been preparing

for the last two years. It comes with better non-linear theories and

has just replaced the legacy arithmetic solvers in Z3. According to

the Z3 developers, STORM could help expedite the integration of

this new feature by finding bugs early, which it did. Since Z3-AS

has just now been integrated with the current version of Z3 and we

have only been testing it independently, we include it separately in

our evaluation.

Due to the success of STORM in detecting intricate critical bugs

in Z3-AS, the Z3 developers described our fuzzer as being “extremely
useful” and have now asked us to test Z3’s current debug branch

(let us refer to it as Z3-DBG). Z3-DBG implements a variety of new

solver features in which STORM has already detected a critical bug

(see Sect. 5.5).

Finally, the developers of the Z3str3 string solver [12] asked us

to provide them with STORM-generated string instances. They

5
https://github.com/Practical-Formal-Methods/storm

became aware of STORM since it detected several critical issues

in Z3str3, which we reported. Note that Z3str3 is developed by

the same group of people as StringFuzz [13]. We, therefore, sus-

pect that STORM found bugs in Z3str3 that StringFuzz could not

find, especially since StringFuzz does not target critical bugs. The

STORM-generated instances that we provided (in addition to the

bug-revealing ones that we reported) were used as a regression

test suite during the development of performance enhancements

in Z3str3. According to a developer of Z3str3, our instances helped

reveal critical bugs introduced by these enhancements. Most of

these bugs were due to missing or incorrect axioms in Z3str3.

5.2 Logic Selection
In our experimental evaluation, for each solver, we identified well

supported logics based on its participation in SMT-COMP 2019 [3].

In certain cases, we also added logics identified as error-prone by

the solver developers, such as QF_FP. In general however, STORM
can handle the intersection of all logics supported by the SMT-

LIB v2 input format and all logics supported by Z3. The latter

constraint emerges because our implementation relies on Z3’s APIs

for generating the mutated SMT instances (see Sect. 4).

Tab. 2 shows the tested logics for each solver. (The second co-

lumn and second to last row of the table should be ignored for

now.) The logic abbreviations are explained in the SMT-LIB stan-

dard [4], but generally speaking, the following rules hold. QF stands
for quantifier-free formulas, A for arrays, AX for arrays with ex-

tensionality, BV for bitvectors, FP for floating-point arithmetic, IA
for integer arithmetic, RA for real arithmetic, IRA for integer real
arithmetic, IDL for integer difference logic, RDL for rational diffe-
rence logic, L before IA, RA, or IRA for the linear fragment of these

arithmetics, N before IA, RA, or IRA for the non-linear fragment, UF
for the extension that allows free sort and function symbols, S for
strings, and DT for datatypes.

5.3 Benchmark Selection
For our experiments, we used as seeds all non-incremental SMT-

LIB instances in SMT-COMP 2019 [3]. We also used all SMT-LIB

instances in the regression test suites of CVC4, Yices2, and Z3. The

second column of Tab. 2 shows how many seeds correspond to each

tested logic. The second to last row of the table (“Unsp.”) refers to

instances in which the logic is unspecified—the solver may use any.

In general, we only tested each solver with logics, and thus

instances, it supports. For seeds without a specified logic, we only

generated mutations of those that each solver could handle.

5.4 Experimental Setup
For our experiments, we used the following setting for STORM
unless stated otherwise: 𝐷𝑚𝑎𝑥 = 64, 𝐴𝑚𝑎𝑥 = 64, NC between 200

and 1500, and NM between 300 and 1000 (see Alg. 1). Both NC and

NM were adjusted dynamically within the above ranges based on

the size of the initial pool. The goal was to use larger values for

larger initial pools, and thus, larger seeds.

We performed all experiments on a 32-core Intel ® Xeon ® E5-

2667 v2 CPU @ 3.30GHz machine with 256GB of memory, running

Debian GNU/Linux 10 (buster).

https://github.com/Practical-Formal-Methods/storm
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Table 2: The tested logics per solver and the number of seed instances per logic.

SMT Solvers
Logic Seeds Boolector CVC4 MathSAT5 SMTInterpol STP Yices2 Z3

ALIA 42 ✓ ✓ ✓
AUFNIA 3 ✓ ✓
LRA 2444 ✓ ✓ ✓
QF_ALIA 42 ✓ ✓ ✓ ✓
QF_AUFNIA 3 ✓ ✓ ✓
QF_DT 1602 ✓ ✓
QF_LRA 1049 ✓ ✓ ✓ ✓
QF_RDL 261 ✓ ✓ ✓
QF_UFIDL 444 ✓ ✓ ✓
QF_UFNRA 38 ✓ ✓ ✓ ✓
UFDTLIA 327 ✓ ✓
AUFDTLIA 728 ✓ ✓
AUFNIRA 1490 ✓ ✓
NIA 14 ✓ ✓
QF_ANIA 8 ✓ ✓ ✓
QF_AX 555 ✓ ✓ ✓ ✓ ✓
QF_FP 40418 ✓ ✓ ✓
QF_NIA 23901 ✓ ✓ ✓ ✓
QF_S 24323 ✓ ✓
QF_UFLIA 580 ✓ ✓ ✓ ✓
UFLIA 9524 ✓ ✓ ✓
AUFLIA 3273 ✓ ✓ ✓
BV 5750 ✓ ✓ ✓
NRA 3813 ✓ ✓
QF_AUFBV 49 ✓ ✓ ✓ ✓
QF_BV 3872 ✓ ✓ ✓ ✓ ✓
QF_IDL 843 ✓ ✓ ✓ ✓
QF_NIRA 3 ✓ ✓ ✓ ✓
QF_UF 7481 ✓ ✓ ✓ ✓
QF_UFLRA 936 ✓ ✓ ✓ ✓
UF 7596 ✓ ✓ ✓
UFLRA 17 ✓ ✓ ✓
AUFLIRA 2268 ✓ ✓ ✓
LIA 388 ✓ ✓ ✓
QF_ABV 8310 ✓ ✓ ✓ ✓
QF_AUFLIA 1310 ✓ ✓ ✓
QF_BVFP 17196 ✓ ✓ ✓
QF_LIA 2104 ✓ ✓ ✓ ✓
QF_NRA 4067 ✓ ✓ ✓ ✓
QF_UFBV 1238 ✓ ✓ ✓ ✓
QF_UFNIA 478 ✓ ✓ ✓ ✓
UFDT 4527 ✓ ✓
UFNIA 4446 ✓ ✓
Unsp. 5825 – – – – – – –

Total 193586 5 43 10 17 1 19 43

Comparisonwith state of the art. Except for a single tool [16],
all existing testing tools for SMT solvers do not use oracles to detect

critical bugs. They, therefore, require differential testing of multiple

solvers to identify such bugs. In RQ2, we evaluate the effectiveness

of STORM at detecting existing critical bugs, including the publicly

reported bugs found by the most closely related tool [16]. Recall

that this tool supports only the theory of strings.
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Table 3: Previously unknown, unique, and confirmed critical
bugs found by STORM in the tested SMT solvers.

SMT Incremental Logics Critical
Solver Mode Bugs

MathSAT5

QF_FP
2

QF_BVFP

Yices2

QF_UFIDL
2

QF_UF

Yices2 ✓
QF_UFIDL

2

QF_UFLRA

Z3

QF_UFLIA

8

QF_BV

UF

LIA

QF_BVFP

QF_LIA

Z3 ✓
QF_FP

3

QF_S

Z3str3 QF_S 6

Z3-AS

AUFNIRA

4

QF_NIA

AUFLIRA

QF_NRA

Z3-AS ✓ AUFNIRA 1

Z3-DBG QF_NIA 1

5.5 Experimental Results
We now discuss our experimental results for each of the above

research questions.

RQ1: New critical bugs. Tab. 3 shows critical bugs found by

STORM in the SMT solvers we tested. The first column of the table

shows the solvers. We list Z3str3 separately as it is not the default

string solver in Z3. The second column denotes whether bugs were

found in the incremental mode of a solver, which essentially corre-

sponds to a different solver variant. The third column lists the logics

in which bugs were found, and the last column shows the number of

bugs. Overall, STORM found 29 critical bugs in three mature
solvers (or nine solver variants) and 15 different logics.

All of these bugs are previously unknown, unique, and confirmed

by the solver developers. Out of the 29 critical bugs, 19 have already

been fixed in the latest solver versions. Note that the bugs were only

detected by STORM-generated instances, i.e., none were detected

by the seeds. In addition to the bugs in the table, STORM was also

able to detect known bugs as well as other issues (i.e., of classes C

and D) as a by-product, which we do not report here.

The feedback from solver developers is very positive, and we

have been discussing it throughout the paper. As another example,

a Yices2 developer told us that STORM found real bugs and that it

is especially useful to have the ability to test the incremental mode

of solvers. He also mentioned that they used to run FuzzSMT [14]

on all theories, and that now this fuzzer runs continuously on new

theories generating “infinite” instances. FuzzSMT, however, does

not target critical bugs, and for this reason, they run VoteSMT [6] to

differentially test solvers and detect incorrect Yices2 results. Despite

this, STORM detected four new critical bugs in Yices2.

Another Yices2 developer commented on the severity of two of

the bugs that STORM found. He mentioned that one was in the

pre-processing component and “easy to fix (and an obvious mistake
in retrospect) but it was in a part of Yices that had probably not been
exercised much”. “The other one was much more tricky to trace and
fix, it was related to a combination of features and optimization in
the E-graph, not localized to a single module”.

RQ2: Known critical bugs. In this research question, we evalu-

ate the effectiveness of STORM in reproducing known critical bugs.

We, therefore, collected all critical bugs that were reported for the

solvers under test during the three-month period between Nov 15

and Feb 15, 2020. We focused only on bugs with a subsequent fix

(i.e., closed issues on GitHub). Out of the seven solvers, we exclude

MathSAT5 because it is closed source, and bugs may only be re-

ported via email. We also exclude Boolector, SMTInterpol, and STP

because no critical bugs were reported for these solvers during the

above time period. For the remaining three solvers, CVC4, Yices2,

and Z3, there were 6, 1, and 14 critical bugs with a fix, respectively,

after excluding all the bugs that we reported.

We ran STORM on the solver version in which each bug was

found. Since developers typically add fixed bugs to their regression

tests, we removed all seeds that revealed any of these bugs (without

being mutated). We collected all generated instances for which

each solver incorrectly returned unsat. To ensure that STORM
actually found the reported bug (and not a different one), we ran

all bug-revealing instances against the first solver version with the

corresponding fix. If the solver now returned sat for at least one
of the instances, we counted the bug as reproduced.

For each of the three solvers, STORM was able to reproduce 1

(CVC4), 1 (Yices2), and 4 (Z3) critical bugs, so 6 out of a total of

21. Therefore, if STORM had run on these solver versions, it
would have prevented approximately 1/3 of the critical-bug
reports in a three-month period. Given that during this period

we reported 10 additional bugs detected by STORM in these solvers,

it is possible that our fuzzer would have been able to reproduce

more bugs if it had run longer or if it was being run continuously.

We also ran STORM on the publicly reported critical bugs found

by Bugariu and Müller [16] (regardless of when they were reported).

STORM was able to reproduce them.

RQ3: Fuzzing bounds. To evaluate the effect of the fuzzing

bounds of STORM, we only considered closed bugs. We used all

19 closed bugs reported by us from RQ1 except for those in Z3-AS

(the original commits could not be retrieved due to a rebase in

the branch) for a remaining of 14 bugs. In addition, we used all

reproduced bugs from RQ2 for a total of 21 bugs.

For each of these bugs, we randomly selected a seed file that had

allowed STORM to detect the bug in RQ1 or RQ2. We performed

eight independent runs of STORM (with random seeds different

from the ones used in RQ1 and RQ2 to avoid bias) to evaluate

the effect of the different fuzzing bounds. STORM was unable to

reproduce one Yices2 bug from RQ1 with any of the eight random

seeds; we therefore do not include it in the results shown in Fig. 4.
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Figure 4: Median number of iterations to find bugs with different configurations of STORM. Each bar corresponds to a confi-
guration with a certain depth and assertion bound.
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Figure 5: Median time (in seconds) to find bugs with different configurations of STORM. Each bar corresponds to a confi-
guration with a certain depth and assertion bound.

For the assertion and depth bounds 𝐴𝑚𝑎𝑥 and 𝐷𝑚𝑎𝑥 , we used

five different settings: 4, 8, 16, 32, and 64. Fig. 4 shows the median

number of iterations (i.e., generated instances) until the bug was

found for different combinations of these settings. We can observe

that a large assertion bound reduces the number of iterations
significantly (e.g., up to 12x for𝐷𝑚𝑎𝑥 = 4). In contrast, the trend
for the depth bound is less clear, which suggests that it has a less

significant effect and is mostly useful for minimizing instances. We

can observe very similar trends when comparing the median time

to find the bug (see Fig. 5).

RQ4: Instance minimization. We now evaluate the effective-

ness of our instance minimization. To this end, we collect all in-

stances revealing the 20 bugs of RQ3 that are generated by STORM
with its default configuration (Sect. 5.4).

The results of minimizing these instances using binary search

(BS) and delta debugging (ddSMT [40]) are shown in Tab. 4. We

perform eight independent minimization runs and report median

results. Instance size is measured in terms of the number of bytes,

the number of assertions, and the maximum formula depth in an

assertion. A dash for ddSMT means either that the instance could

not be minimized or that ddSMT does not support a construct in

the instance. As outlined in Sect. 3.2, we had to adapt ddSMT for

this use case by invoking a second solver to reject minimizations

that would not preserve satisfiability; we used the version of the

solver that fixed the corresponding bug for this purpose.

Despite these adaptations, we observed that ddSMT could not

minimize the instances for bugs 2, 3, 4, 5, 13, 14, and 18. We suspect

that its search space of possible minimizations might not contain

more complex transformations that would be required to both pre-

serve satisfiability and the bug. We observed the same outcome

when running ddSMT on instances that were first minimized using

binary search.

For bugs 10, 11, and 19, ddSMT does not support str.to.re
and str.at, which are supported by Z3str3. For bugs 7, 8, 9, 12,

15, and 16, ddSMT does not support check-sat-using , which
is supported by Z3. Recall that STORM accepts seed instances

expressed in the extension of the SMT-LIB format that is supported

by Z3 (Sect. 4), whereas ddSMT only supports the standard.

Overall, this experiment shows that our minimization proce-
dure works more reliably and is able to significantly reduce
buggy instances (median reduction of 82.7%).However, for the
cases where both procedures produced results, the ddSMT-based

minimization procedure was able to produce smaller instances.

This is not entirely surprising given that BS uses the fuzzer, which

treats predicates not containing other predicates (i.e., ground- or

leaf-predicates) as atomic building blocks. For instance, for bug 17,

the instance that was minimized with BS contains several complex

ground-predicates that ddSMT is able to minimize further. We ex-

pect that more involved combinations of the two approaches could

produce even better results.
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Table 4: Size of original and minimized bug-revealing in-
stances. Instance size is shown in terms of the number of
bytes / number of assertions / maximum formula depth.

Bug Unminimized Minimized Minimized
ID Instances by BS by ddSMT

1 23430/ 64/ 5 20801/ 61/ 5 321/ 4/ 0

2 3756/ 6/ 12 3756/ 6/ 12 –/ –/ –

3 9641/ 20/ 8 5276/ 19/ 9 –/ –/ –

4 66209/ 33/ 56 13086/ 8/ 2 –/ –/ –

5 64071/ 44/ 27 24326/ 24/ 6 –/ –/ –

6 37943/ 51/ 2 4247/ 5/ 0 575/ 4/ 0

7 19408/ 64/ 3 1025/ 5/ 2 –/ –/ –

8 19235/ 27/ 2 4002/ 5/ 0 –/ –/ –

9 23659/ 51/ 4 2004/ 5/ 0 –/ –/ –

10 4275/ 6/ 1 1514/ 5/ 1 –/ –/ –

11 39585/ 64/ 16 5832/ 16/ 2 –/ –/ –

12 22017/ 58/ 5 1013/ 5/ 2 –/ –/ –

13 180082/ 62/ 8 7210/ 5/ 2 –/ –/ –

14 7934/ 10/ 8 4431/ 10/ 5 –/ –/ –

15 72490/ 50/ 0 5455/ 5/ 2 –/ –/ –

16 35725/ 33/ 3 2591/ 5/ 2 –/ –/ –

17 17180/ 21/ 57 1146/ 5/ 0 421/ 1/ 0

18 10176/ 14/ 0 2586/ 14/ 0 –/ –/ –

19 16812/ 51/ 4 13137/ 33/ 6 –/ –/ –

20 16826/ 30/ 1 5163/ 5/ 1 601/ 7/ 0

RQ5: Code coverage. A Yices2 developer mentioned that they

use fuzzer-generated instances to enrich their regression tests such

that they achieve higher coverage. In this research question, we

therefore evaluate whether STORM is able to increase coverage.

We selected one of the solvers (Z3) and four random logics in

which we found bugs (QF_UFLIA, AUFNIRA, UF, LIA). We then

computed the line and function coverage when running Z3 on all

the instances from SMT-COMP 2019 [3] for these logics (10054

seeds). The result is shown in the first row of Tab. 5. At the same

time, we randomly selected 5 instances from each logic and ran

STORM with 𝑁𝑀 = 500 and a single new random seed to ge-

nerate exactly 500 new instances for each of the 20 seed instances.

Tab. 5 shows that, as more instances are generated, coverage in-

creases noticeably (9540 more lines and 4605 more functions after

only 500 generated instances). This demonstrates that running
STORM on only a small number of seed instances is able to
result in a noticeable coverage increase over a large number
of instances from a well known benchmark set.

5.6 Threats to Validity
We identify the following threats to the validity of our experiments.

Selection of seeds. STORM requires seed instances as input,

and our results do not necessarily generalize to other seeds [43].

However, we selected as seeds instances from SMT-COMP 2019 [3]

as well as regression test suites of solvers. We believe that our

selection is sufficiently broad to mitigate this threat. In addition, we

make our tool open source so it may be run with different seeds.

Table 5: Code coverage increase as more instances are gene-
rated by STORM.

Generated Line Function
Instances Coverage Coverage

0 58219 26256

100 66945 30498

200 67063 30524

300 67119 30547

400 67208 30598

500 67759 30861

Selection of solvers. The bugs found by STORM depend on the

solvers and logics that we tested. However, we selected a wide

range of different, mature solvers and logics to mitigate this threat.

Randomness in fuzzing. A common threat when evaluating

fuzzers is related to the internal validity [43] of their results. To

mitigate systematic errors that may be introduced due to random

choices of our fuzzer, we used random seeds to ensure deterministic

results and performed experiments for eight different seeds.

6 RELATEDWORK
SMT solvers are core components in many program analyzers,

and as a result, their reliability is of crucial importance. Although

it is feasible to verify SAT and SMT algorithms [27, 35, 37], it is
challenging and time consuming to verify even very basic SAT-

or SMT-solver implementations. Verifying state-of-the-art, high-

performance solver implementations, such as CVC4 [10] and Z3 [24],

is completely impractical. For these reasons, there is a growing in-

terest in testing such solvers, alongside related efforts that focus

on testing entire program analyzers.

Testing SAT and SMT solvers. FuzzSMT [14] focuses on find-

ing crashes of SMT solvers for bitvector and array instances. It

uses grammar-based blackbox fuzzing to generate crash-inducing

instances and minimizes any such instances with delta debug-

ging [2, 46]. Brummayer et al. [15] extend this line of work to

SAT and QBF solvers. In contrast, STORM performs mutational

fuzzing, and its minimization procedure leverages the fuzzer and its

bounds regarding the number of assertions and the formula depth.

StringFuzz [13] targets testing of string solvers. In addition to

randomly generating syntactically valid instances using a grammar,

it is also able to mutate or transform formulas in existing instances.

However, since not all of its transformations preserve satisfiability,

it is not easily possible to leverage metamorphic testing [9] to

detect critical bugs. In contrast to both FuzzSMT and StringFuzz,

the satisfiability of all STORM-generated instances is known.

Recently, Bugariu and Müller [16] proposed an automated test-

ing technique that synthesizes SMT instances for the string theory.

The true satisfiability of the generated instances is derived by con-

struction and used as a test oracle. In contrast, STORM performs

mutational fuzzing and supports a wide range of theories.

Unlike the above approaches that fuzz the input instances of

solvers, Artho et al. [7] and Niemetz et al. [41] develop model-based

API testing frameworks for SAT and SMT solvers. These focus on

testing various API parameters and solver options.
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Testing program analyzers. Kapus and Cadar [32] combine

random program generation with differential testing [39] to find

bugs in symbolic-execution engines. Their technique is inspired by

existing compiler-testing techniques (e.g., Csmith [45]) and used to

test KLEE [18], CREST [1], and FuzzBALL [38].

Cuoq et al. [23] use randomly generated programs to test the

Frama-C static-analysis platform [21]. Bugariu et al. [17] present

a fuzzing technique for detecting soundness and precision issues

in implementations of abstract domains—the core components of

abstract interpreters [22]. They use algebraic properties of abstract

domains as test oracles and find bugs in widely used domains.

Recently, Taneja et al. [44] proposed a testing technique for identi-

fying soundness and precision issues in static dataflow analyses by

comparing results with a sound and maximally precise SMT-based

analysis; they rely on the SMT solver to provide correct results.

Zhang et al. [47] develop a practical and automated fuzzing

technique to test software model checkers. They focus on testing

control-flow reachability properties of programs. More specifically,

they synthesize valid branch reachability properties using concrete

program executions and then fuse individual properties of different

branches into a single safety property.

Klinger et al. [33] propose an automated technique to test the

soundness and precision of program analyzers in general. Their

approach is based on differential testing. From seed programs, they

generate program-analysis benchmarks on which they compare

the results of different analyzers.

7 CONCLUSION
In this paper, we have presented a novel fuzzing technique for de-

tecting critical bugs in SMT solvers—key components of many state-

of-the-art program analyzers. Conceptually, STORM is a blackbox

mutational fuzzer that uses fragments of existing SMT instances

to generate new, realistic instances. Its formula-generation phase

takes inspiration from grammar-based fuzzers; it leverages a mini-

mal, but functionally complete, grammar for Boolean formulas to

generate new formulas from fragments found in seeds. Finally, it

solves the oracle problem by generating instances that are satisfi-

able by construction.
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