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ABSTRACT

We present Harvey, an industrial greybox fuzzer for smart con-
tracts, which are programs managing accounts on a blockchain.

Greybox fuzzing is a lightweight test-generation approach that
effectively detects bugs and security vulnerabilities. However, grey-
box fuzzers randomly mutate program inputs to exercise new paths;
this makes it challenging to cover code that is guarded by nar-
row checks. Moreover, most real-world smart contracts transition
through many different states during their lifetime, e.g., for every
bid in an auction. To explore these states and thereby detect deep
vulnerabilities, a greybox fuzzer would need to generate sequences
of contract transactions, e.g., by creating bids from multiple users,
while keeping the search space and test suite tractable.

In this paper, we explain how Harvey alleviates both challenges
with two key techniques. First, Harvey extends standard greybox
fuzzing with a method for predicting new inputs that are more
likely to cover new paths or reveal vulnerabilities in smart contracts.
Second, it fuzzes transaction sequences in a targeted and demand-
driven way. We have evaluated our approach on 27 real-world
contracts. Our experiments show that our techniques significantly
increase Harvey’s effectiveness in achieving high coverage and
detecting vulnerabilities, in most cases orders-of-magnitude faster.
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• Software and its engineering → Software testing and de-
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1 INTRODUCTION

Smart contracts are programs that manage crypto-currency ac-
counts on a blockchain. Reliability of these programs is critical
since bugs may jeopardize digital assets. Automatic test generation
has shown to be effective in finding many types of bugs, thereby
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improving software quality. In fact, there exists a wide variety of
test-generation tools, ranging from random testing [29, 30, 59], over
greybox fuzzing [5, 9], to dynamic symbolic execution [20, 37].

Random testing [29, 30, 59] and blackbox fuzzing [7, 11] generate
random inputs to a program, run the program with these inputs,
and check for bugs. Despite the practicality of these techniques,
their effectiveness, that is, their ability to explore new paths, is
limited. The search space of valid program inputs is typically huge,
and a random exploration can only exercise a small fraction of
(mostly shallow) paths.

At the other end of the spectrum, dynamic symbolic execu-
tion [20, 37] and whitebox fuzzing [19, 34, 38] repeatedly run a
program, both concretely and symbolically. At runtime, they collect
symbolic constraints on program inputs from branch statements
along the execution path. These constraints are then appropriately
modified and a constraint solver is used to generate new inputs,
thereby steering execution toward another path. Although these
techniques are very effective in covering new paths, they cannot
be as efficient and scalable as other test-generation techniques that
do not spend any time on program analysis and constraint solving.
Moreover, dynamic symbolic execution struggles with functionality
commonly found in smart contracts, such as hash functions. Even
more importantly, it struggles with input-dependent loops, which
are present in any smart contract due to the possibly unbounded
number of transactions that may invoke it. This is why existing
symbolic-execution engines targeting smart contracts bound the
number of explored transactions [6, 57].

Greybox fuzzing [5, 9] lies in the middle of the spectrum between
performance and effectiveness in discovering new paths. It does
not require program analysis or constraint solving, but it relies
on a lightweight program instrumentation that allows the fuzzer
to tell when an input exercises a new path. In other words, the
instrumentation is useful in computing a unique identifier for each
explored path in the program under test. American Fuzzy Lop
(AFL) [9] is a prominent example of a state-of-the-art greybox fuzzer
that has detected numerous bugs and security vulnerabilities [1].

In this paper, we present Harvey, an industrial greybox fuzzer
for smart contracts. Harvey has been under development since
Sept. 2017. It is used at ConsenSys1 both for smart-contract audits
and as part of MythX, an automated contract analysis service2. It
has analyzed more than 3.3M submitted contracts from March 2019
to April 2020 and has found hundreds of thousands of issues.

Here, we describeHarvey’s design and architecture and focus on
how to alleviate two key challenges we encountered when fuzzing
real-world contracts. Although the challenges are not exclusive to
our specific application domain, our techniques are shown to be
particularly effective for smart contracts, thereby providing useful
insights for other contract analyzers.

1https://consensys.net
2https://mythx.io

https://doi.org/10.1145/3368089.3417064
https://doi.org/10.1145/3368089.3417064
https://consensys.net
https://mythx.io


ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Valentin Wüstholz and Maria Christakis

Challenge #1. Despite the fact that greybox fuzzing strikes a
good balance between performance and effectiveness, the inputs
are still randomly mutated, for instance, by flipping arbitrary bits.
As a result, many generated inputs exercise the same program
paths. To address this problem, there have emerged techniques that
direct greybox fuzzing toward low-frequency paths [17], vulnerable
paths [64], deep paths [70], or specific sets of program locations [16].
Such techniques have mostly focused on which seed inputs to
prioritize and which parts of these inputs to mutate.

Challenge #2. Smart contracts may transition through many
different states during their lifetime, for instance, for every bet in
a gambling game. The same holds for any stateful system that is
invoked repeatedly, such as a web service. Therefore, detecting
vulnerabilities in such programs often requires generating and
fuzzing sequences of invocations that explore the possible states. For
instance, to test a smart contract that implements a gambling game,
a fuzzer would need to automatically create sequences of bets from
multiple players. However, since the number of possible sequences
grows exponentially with the sequence length, it is difficult to
efficiently detect the few sequences that reveal a bug.

Our approach and general insights. To alleviate the first chal-
lenge, we developed a technique that systematically predicts new
inputs for the program under test with the goal of increasing perfor-
mance and effectiveness of greybox fuzzing. In contrast to existing
work in greybox fuzzing, our approach suggests concrete input
values based on information from previous executions, instead of
performing arbitrary mutations.

Inputs are predicted in a way that aims to direct greybox fuzzing
toward optimal executions, for instance, defined as executions that
flip a branch condition in order to increase coverage. Our technique
is parametric in what constitutes an optimal execution, and in
particular, in what properties such an execution needs to satisfy.

More specifically, each program execution is associated with
zero or more cost metrics, which are computed automatically. A cost
metric captures how close the execution is to satisfying a given
property at a given program location. Executions that minimize a
cost metric are considered optimal with respect to that metric. For
example, a cost metric could be defined at each arithmetic operation
in the program such that it is minimized (i.e., becomes zero) when
an execution triggers an arithmetic overflow. Our technique uses
the costs that are computed with cost metrics along executions of
the program to iteratively predict inputs leading to optimal execu-
tions. Our experiments show that Harvey is extremely successful
in predicting inputs that flip a branch condition even in a single
iteration (average success rate of 99%).

Although this input-prediction technique is very effective in prac-
tice, it is not sufficient for thoroughly testing a smart contract and
its state space. As a result, Harvey generates, executes, and fuzzes
sequences of transactions, which invoke the contract’s functions.
Each of these transactions can have side effects on the contract’s
state, which may affect the execution of subsequent invocations.
To alleviate the second challenge of exploring the search space of
all possible sequences, we devised a technique for demand-driven
sequence fuzzing, which avoids generating transaction sequences
when they cannot further increase coverage. Our experiments show
that 80% of bugs in real smart contracts require generating more
than one transaction to be found. This highlights the need for

techniques like ours that are able to effectively prune the space of
transaction sequences.

We evaluate Harvey on 27 benchmarks from related work [84]
and a large industrial benchmark. The presented techniques boost
its effectiveness in achieving high coverage (by up to 3x) and de-
tecting vulnerabilities, in most cases orders-of-magnitude faster.

Contributions.We make the following contributions:

– We present Harvey, a greybox fuzzer for smart contracts
that is being used industrially.

– We describe our architecture and two key techniques for
alleviating the important challenges outlined above.

– We evaluate our fuzzer on real-world benchmarks and demon-
strate the effectiveness of the underlying techniques.

2 BACKGROUND

In this section, we give background on standard greybox fuzzing
and smart contracts.

2.1 Greybox Fuzzing

Alg. 1 shows how greybox fuzzing works. (The grey boxes should
be ignored for now.) The fuzzer takes as input the program under
test prog and a set of seeds 𝑆 . It starts by running the program with
the seeds, and during each program execution, the instrumentation
is able to capture the path that is currently being explored and
associate it with a unique identifier PID (line 1). Note that the PIDs
data structure is a key-value store from a PID to an input that
exercises the path associated with PID. Next, an input is selected for
mutation (line 3), and it is assigned an “energy” value that denotes
how many times it should be fuzzed (line 5).

The input is mutated (line 12), and the program is run with the
new input (line 13). If the program follows a path that has not
been previously explored, the new input is added to the test suite
(lines 14–15). The above process is repeated until an exploration
bound is reached (line 2). The fuzzer returns a test suite containing
one test for each explored path.

2.2 Smart Contracts

Ethereum [3, 4] is one of the most popular blockchain-based [63, 72,
73], distributed-computing platforms [14]. It supports two kinds of
accounts, user and contract accounts, both of which store a balance
and publicly reside on the blockchain.

In contrast to a user account, a contract account is managed
through code that is associated with it. The contract code captures
agreements between users and other contracts, for example, to en-
code the rules of an auction. A contract account also has persistent
state where the code may store data, such as auction bids.

Contract accounts, their code, and persistent state are called
smart contracts. Programmers may write the code in several lan-
guages, like Solidity or Vyper, all of which compile to the Ethereum
Virtual Machine (EVM) [83] bytecode.

To interact with a contract, users issue transactions that call its
functions, for instance, to bid in an auction, and are required to pay
a fee for transactions to be executed. This fee is called gas and is
roughly proportional to how much code is run.
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1 function baz(int256 a, int256 b, int256 c)

2 returns (int256) {

3 int256 d = b + c;

4 minimize(d < 1 ? 1 - d : 0);

5 minimize(d < 1 ? 0 : d);

6 if (d < 1) {

7 minimize(b < 3 ? 3 - b : 0);

8 minimize(b < 3 ? 0 : b - 2);

9 if (b < 3) {

10 return 1;

11 }

12 minimize(a == 42 ? 1 : 0);

13 minimize(a == 42 ? 0 : |a - 42|);

14 if (a == 42) {

15 return 2;

16 }

17 return 3;

18 } else {

19 minimize(c < 42 ? 42 - c : 0);

20 minimize(c < 42 ? 0 : c - 41);

21 if (c < 42) {

22 return 4;

23 }

24 return 5;

25 }

26 }

Figure 1: Example for fuzzing with input prediction.

3 OVERVIEW

We now give an overview of our approach focusing on the chal-
lenges we aim to alleviate.

3.1 Challenge #1: Random Input Mutations

Fig. 1 shows a constructed smart-contract function baz (in Solidity)
that takes as input three (256-bit) integers a, b, and c and returns
an integer. There are five paths in this function, all of which are
feasible. Each path is denoted by a unique return value. (The grey
boxes should be ignored for now.)

When running AFL, a state-of-the-art greybox fuzzer, on (a C
version of) function baz, only four out of five paths are explored
within 12h. During this time, greybox fuzzing constructs a test
suite of four inputs, each of which exploring a different path. The
path with return value 2 remains unexplored even after the fuzzer
generates about 311M different inputs. All but four of these inputs
are discarded as they exercise a path in baz that has already been
covered by a previous test.

The path with return value 2 is not covered because greybox
fuzzers randomly mutate program inputs (line 12 of Alg. 1). It is
generally challenging for fuzzers to generate inputs that satisfy
“narrow checks”, that is, checks that only become true for very few
input values (e.g., line 14 of Fig. 1). In this case, the probability that
the fuzzer will generate value 42 for input a is 1 out of 2256 for
256-bit integers. Even worse, to cover the path with return value
2 (line 15), the sum of inputs b and c also needs to be less than 1
(line 6) and b must be greater than or equal to 3 (line 9). As a result,
several techniques have been proposed to guide greybox fuzzing to
satisfy such narrow checks, e.g., selective whitebox fuzzing [71].

Fuzzing with input prediction. In contrast, our technique for
input prediction does not require any analysis or constraint solving.

It does, however, require additional instrumentation of the pro-
gram to collect more information about its structure than standard
greybox fuzzing, thus making fuzzing a lighter shade of grey. This
information captures the distance from an optimal execution at
various program points and is then used to predict inputs that guide
exploration toward optimal executions.

Our fuzzer takes as input a program prog and seeds 𝑆 . It also
requires a partial function 𝑓cost that maps execution states to cost
metrics. When execution of prog reaches a state 𝑠 , the fuzzer evalu-
ates the cost metric 𝑓cost (𝑠). For example, the grey boxes in Fig. 1
define a function 𝑓cost for baz . Each minimize statement specifies
a cost metric at the execution state where it is evaluated. Note
that 𝑓cost constitutes a runtime instrumentation of prog—we use
minimize statements only for illustration. A compile-time instru-
mentation would increase gas usage of the contract and potentially
lead to false positives when detecting out-of-gas errors. On the
contrary, a runtime instrumentation is implemented in the EVM,
and thus, it does not affect contract semantics.

The cost metrics of Fig. 1 define optimal executions as those
that flip a branch condition and are inspired by Korel’s branch dis-
tance [49]. Specifically, consider an execution along which variable
d evaluates to 0. This execution takes the then-branch of the first
if-statement, and the cost metric defined by the minimize state-
ment on line 4 evaluates to 1. This means that the distance of the
current execution from an execution that exercises the (implicit)
else-branch of the if-statement is 1. Now, consider a second execu-
tion that also takes this then-branch (d evaluates to –1). In this case,
the cost metric on line 4 evaluates to 2, which indicates a greater
distance from an execution that exercises the else-branch.

Based on this information, our input-prediction technique is able
to suggest new inputs that make the execution of baz take the
else-branch of the first if-statement and minimize the cost metric
on line 4 (i.e., the cost becomes zero). For instance, assume that the
predicted inputs cause d to evaluate to 7. Although the cost metric
on line 4 is now minimized, the cost metric on line 5 evaluates to 7,
which is the distance of the current execution from an execution
that takes the then-branch.

Similarly, the minimize statements on lines 7–8, 12–13, and
19–20 of Fig. 1 define cost metrics that are minimized when an
execution flips a branch condition in a subsequent if-statement.
This instrumentation aims to maximize path coverage, and for this
reason, an execution can never minimize all cost metrics. In fact,
the fuzzer has achieved full path coverage when the generated tests
cover all feasible combinations of branches in the program; that is,
when they minimize all possible combinations of cost metrics.

The fuzzer does not exclusively rely on prediction to generate
program inputs, for instance, when there are not enough execu-
tions from which to make a good prediction. In the above example,
the inputs for the first two executions (where d is 0 and –1) are
generated by the fuzzer without prediction. Prediction can only
approximate correlations between inputs and their corresponding
costs; therefore, it is possible that certain predicted inputs do not
lead to optimal executions. In such cases, it is also up to standard
fuzzing to generate inputs that cover any remaining paths.

For the example of Fig. 1, Harvey explores all five paths within
8s and after generating only 15’545 different inputs.
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1 contract Foo {

2 int256 private x;

3 int256 private y;

4

5 constructor () public {

6 x = 0;

7 y = 0;

8 }

9

10 function Bar() public returns (int256) {

11 if (x == 42) {

12 assert(false);
13 return 1;

14 }

15 return 0;

16 }

17

18 function SetY(int256 ny) public { y = ny; }

19

20 function IncX() public { x++; }

21

22 function CopyY() public { x = y; }

23 }

Figure 2: Example for demand-driven sequence fuzzing.

3.2 Challenge #2: State Space Exploration

Fig. 2 shows a simple contract Foo. The constructor on line 5 ini-
tializes variables x and y, which are stored in the persistent state of
the contract. In function Bar , the failing assertion (line 12) denotes
a bug. An assertion violation causes a transaction to be aborted,
and as a result, users lose their gas. Triggering the bug requires a se-
quence of at least three transactions, invoking functions SetY (42) ,
CopyY (), and Bar(). (Note that a transaction may directly invoke
up to one function.) The assertion violation may also be triggered
by calling IncX 42 times before invoking Bar .

There are three ways to test this contract with a standard grey-
box fuzzer. First, each function could be fuzzed separately without
considering the persistent variables of the contract as fuzzable in-
puts. For example, Bar would be executed only once—it has zero
fuzzable inputs. No matter the initial values of x and y, the fuzzer
would only explore one path in Bar .

Second, each function could be fuzzed separately while consid-
ering the persistent variables as fuzzable inputs. The fuzzer would
then try to explore both paths in Bar by generating values for x

and y. However, the probability of generating value 42 for x is tiny,
as discussed earlier. More importantly, this approach might result
in false positives when the persistent state generated by the fuzzer
is not reachable with any sequence of transactions. For example,
the contract would never fail if SetY ensured that y is never set to
42 and IncX only incremented x up to 41.

Third, the fuzzer could try to explore all paths in all possible
sequences of transactions up to a bounded length. This, however,
means that a path would span all transactions (instead of a single
function). For example, a transaction invoking Bar and a sequence
of two transactions invoking CopyY and Bar would exercise two
different paths in the contract, even though from the perspective of
Bar this is not the case. With this approach, the number of possible
sequences grows exponentially in their length, and so does the
number of tests in the test suite. The larger the test suite, the more

difficult it becomes to find a test that, when fuzzed, leads to the
assertion in Foo , especially within a certain time limit.

We propose a technique for demand-driven sequence fuzzing
that alleviates these limitations. First, it discovers that the only
branch in Foo that requires more than a single transaction to be
covered is the one leading to the assertion in Bar. Consequently,
Harvey only generates transaction sequences whose last trans-
action invokes Bar. Second, our technique aims to increase path
coverage only of the function that is invoked by this last transac-
tion. In other words, the goal of any previous transactions is to
set up the state, and path identifiers are computed only for the
last transaction. Therefore, reaching the assertion in Bar by first
calling SetY (42) and CopyY() or by invoking IncX() 42 times
both result in covering the same path of the contract.

Harvey triggers the above assertion violation in about 29s and
after generating 48’117 inputs.

4 FUZZINGWITH INPUT PREDICTION

In this section, we present the technical details of how we extend
greybox fuzzing with input prediction.

4.1 Algorithm

The grey boxes in Alg. 1 indicate the key differences. In addition
to the program under test prog and a set of seeds 𝑆 , Alg. 1 takes
as input a partial function 𝑓cost that, as explained earlier, maps
execution states to cost metrics. The fuzzer first runs the program
with the seeds, and during each program execution, it evaluates
the cost metric 𝑓cost (s) for every encountered execution state s
in the domain of 𝑓cost (line 1). Like in standard greybox fuzzing,
each explored path is associated with a unique identifier PID. Note,
however, that the PIDs data structure now maps a PID both to an
input that exercises the corresponding path as well as to a cost
vector, which records all costs computed during execution of the
program with this input. Next, an input is selected for mutation
(line 3) and assigned an energy value (line 5).

The input is mutated (line 12), and the program is run with the
new input (line 13). We assume that the new input differs from
the original input (which was selected for mutation on line 3) by
the value of a single input parameter—an assumption that typically
holds for mutation-based greybox fuzzers. As usual, if the program
follows a path that has not been explored, the new input is added
to the test suite (lines 14–15).

On line 17, the original and the new input are passed to the
prediction component of the fuzzer along with their cost vectors.
This component inspects 𝑖𝑛𝑝𝑢𝑡 and 𝑖𝑛𝑝𝑢𝑡 ′ to determine the input
parameter by which they differ. Based on the cost vectors, it then
suggests a new value for this input parameter such that one of the
cost metrics is minimized. In case a new input is predicted, the
program is tested with this input, otherwise the original input is
mutated (lines 8–13). The former happens even if the energy of the
original input has run out (line 7) to ensure that we do not waste
predicted inputs.

The above process is repeated until an exploration bound is
reached (line 2), and the fuzzer returns a test suite containing one
test for each program path that has been explored.
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Algorithm 1: Greybox fuzzing with input prediction.

Input: Program prog, Seeds 𝑆 , Cost function 𝑓cost
1 PIDs← RunSeeds(𝑆, prog, 𝑓cost )
2 while ¬Interrupted() do
3 input, cost ← PickInput(PIDs)
4 energy← 0
5 maxEnergy← AssignEnergy(input)
6 predictedInput ← nil

7 while energy < maxEnergy ∨ predictedInput ≠ nil do

8 if predictedInput ≠ nil then

9 input′← predictedInput
10 predictedInput ← nil

11 else

12 input′← FuzzInput(input)
13 PID′, cost′← Run(input′, prog, 𝑓cost )
14 if IsNew(PID′, PIDs) then
15 PIDs← Add(PID′, input′, cost′, PIDs)
16 if energy < maxEnergy then

17 predictedInput ← Predict(input, cost, input′, cost′)
18 energy← energy + 1

Output: Test suite Inputs(PIDs)

Example. In Tab. 1, we run our algorithm on the example of
Fig. 1 step by step. The first column of the table shows an identifier
for every generated test, and the second column shows the path that
each test exercises identified by the return value of the program.
The highlighted boxes in this column denote paths that are covered
for the first time, which means that the corresponding tests are
added to the test suite (lines 14–15 of Alg. 1). The third column
shows the test identifier from which the value of variable input is
selected (line 3 of Alg. 1). Note that, according to the algorithm,
input is selected from tests in the test suite.

The fourth column shows a new input for the program under
test; this input is either a seed or the value of variable input ′ in
the algorithm, which is obtained with input prediction (line 9)
or fuzzing (line 12). Each highlighted box in this column denotes
a predicted value. The fifth column shows the cost vector that
is computed when running the program with the new input of
the fourth column. Note that we show only non-zero costs and
that the subscript of each cost denotes the line number of the
corresponding minimize statement in Fig. 1. The sixth column
shows which costs (if any) are used to predict a new input, and the
last column shows the current energy value of the algorithm’s input
(lines 4 and 18). For simplicity, we consider maxEnergy of Alg. 1
(line 5) to always have value 2 in this example. Our implementation,
however, incorporates an existing energy schedule [17].

We assume that the seeds 𝑆 contain only the random input (a =

−1, b = 0, c = −5) (test #1 in Tab. 1). This input is then fuzzed to
produce (a = −1, b = −3, c = −5) (test #2), that is, to produce a
new value for input parameter b. Our algorithm randomly selects
the costs computed with metric 𝐶7 to predict a new value for b.
(We explain how new values are predicted in the next subsection.)
As a result, test #3 exercises a new path of the program (the one
with return value 3). From the cost vectors of tests #1 and #3, only
the costs computed with metric 𝐶4 may be used to predict another
value for b; costs𝐶7 and𝐶8 are already zero in one of the two tests,
while metric 𝐶13 is not reached in test #1. Even though the energy
of the original input (from test #1) has run out, the algorithm still

Table 1: Running Alg. 1 on the example of Fig. 1.

Test Path

Test New Input

Costs

Pred.

Energy

Input a b c Cost

1 – −1 0 −5 𝐶4 = 6 – –1
𝐶7 = 3

2 1 1 −1 −3 −5 𝐶4 = 9
𝐶7 0

𝐶7 = 6

3 1 −1 −5
𝐶4 = 3

𝐶4 1𝐶8 = 13 3
𝐶13 = 43

4 1 −1 −5 𝐶5 = 1 – 24 6
𝐶19 = 47

5 3 3 7 3 −5
𝐶4 = 3

𝐶13 0𝐶8 = 1
𝐶13 = 35

6 3 3 −5
𝐶4 = 3

– 1𝐶8 = 12 42
𝐶12 = 1

7 4 4 −1 6 0 𝐶5 = 6
𝐶19 0

𝐶19 = 42

8 4 −1 6 𝐶5 = 48 – 15 42
𝐶20 = 1

runs the program with the input predicted from the 𝐶4 costs (line
7). This results in covering the path with return value 4.

Next, we select an input from tests #1, #3, or #4 of the test suite.
Let’s assume that the fuzzer picks the input from test #3 andmutates
the value of input parameter a. Note that the cost vectors of tests #3
and #5 differ only with respect to the𝐶13 costs, which are therefore
used to predict a new input for a. The new input exercises a new
path of the program (the one with return value 2). At this point, the
cost vectors of tests #3 and #6 cannot be used for prediction because
the costs are either the same (𝐶4 and 𝐶8) or they are already zero
in one of the two tests (𝐶12 and 𝐶13). Since no input is predicted
and the energy of the original input (from test #3) has run out, our
algorithm selects another input from the test suite.

This time, let’s assume that the fuzzer picks the input from test #4
and mutates the value of input parameter c. From the cost vectors
of tests #4 and #7, it randomly selects the 𝐶19 costs for predicting
a new value for c. The predicted input exercises the fifth path of
the program, thus achieving full path coverage of function baz by
generating only 8 tests.

Note that our algorithm makes several non-systematic choices,
which may be random or based on heuristics, such as when function
PickInput picks an input from the test suite, when FuzzInput
selects which input parameter to fuzz, or when Predict decides
which costs to use for prediction. For illustrating how the algorithm
works, we made “good” choices such that all paths are exercised
with a small number of tests. In practice, the fuzzer achieved full
path coverage of baz with 15’545 tests, instead of 8 (see Sect. 3.1).

4.2 Input Prediction

Our algorithm passes to the prediction component the input vectors
input and input ′ and the corresponding cost vectors cost and cost ′

(line 17 of Alg. 1). The input vectors differ by the value of a single
input parameter, say 𝑖0 and 𝑖1. Now, let us assume that the prediction
component selects a cost metric to minimize and that the costs that
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have been evaluated using this metric appear as 𝑐0 and 𝑐1 in the
cost vectors, i.e., 𝑐0 is associated with 𝑖0, and 𝑐1 with 𝑖1.

For example, consider tests #3 and #5 in Tab. 1. The input vectors
differ by the value of input parameter a, so 𝑖0 = −1 (value of a in
test #3) and 𝑖1 = 7 (value of a in test #5). The prediction component
chooses to make a prediction based on 𝐶13 since the cost vectors
of tests #3 and #5 differ only with respect to this cost metric, so
𝑐0 = 43 (value of𝐶13 in test #3) and 𝑐1 = 35 (value of𝐶13 in test #5).

Using the two data points (𝑖0, 𝑐0) and (𝑖1, 𝑐1), the goal is to find a
value 𝑖 such that the corresponding cost is zero. In other words, our
technique aims to find a root of the unknown, but computable, func-
tion that relates input parameter a to cost metric 𝐶13. While there
is a wide range of root-finding algorithms, Harvey uses the Secant
method. Like other methods, such as Newton’s, the Secant method
tries to find a root by performing successive approximations.

Its basic approximation step considers the two data points as
x-y-coordinates on a plane. Our technique then fits a straight line
𝑐 (𝑖) =𝑚 ∗ 𝑖 + 𝑘 through the points, where𝑚 is the slope of the line
and 𝑘 is a constant. To predict the new input value, it determines
the x-coordinate 𝑖 where the line intersects with the x-axis (i.e.,
where the cost is zero).

From the points (−1, 43) and (7, 35) defined by tests #3 and #5,
we compute the line to be 𝑐 (𝑖) = −𝑖 + 42. Now, for the cost to be
zero, the value of parameter a must be 42. Indeed, when a becomes
42 in test #6, cost metric 𝐶13 is minimized.

This basic approximation step is precise if the target cost metric
is indeed linear (or piece-wise linear) with respect to the input pa-
rameter for which the prediction is made. If not, the approximation
may fail to minimize the cost metric. In such cases, Harvey applies
the basic step iteratively (as the Secant method). Our experiments
show that one iteration is typically sufficient in practice.

4.3 Cost Metrics

We now describe the different cost metrics that our fuzzer aims
to minimize: (1) ones that are minimized when execution flips a
branch condition, and (2) ones that are minimized when execution
is able to modify arbitrary memory locations.

Branch conditions. We have already discussed cost metrics
that are minimized when execution flips a branch condition in
the example of Fig. 1. Here, we show how the cost metrics are
automatically derived from the program under test.

For the comparison operators == (eq), < (lt), and <= (le), we define
the following cost functions:

𝐶eq (𝑙, 𝑟 ) =

{
1, 𝑙 = 𝑟

0, 𝑙 ≠ 𝑟
𝐶eq (𝑙, 𝑟 ) =

{
0, 𝑙 = 𝑟

|𝑙 − 𝑟 |, 𝑙 ≠ 𝑟

𝐶lt (𝑙, 𝑟 ) =

{
𝑟 − 𝑙, 𝑙 < 𝑟

0, 𝑙 ≥ 𝑟
𝐶lt (𝑙, 𝑟 ) =

{
0, 𝑙 < 𝑟

𝑙 − 𝑟 + 1, 𝑙 ≥ 𝑟

𝐶le (𝑙, 𝑟 ) =

{
𝑟 − 𝑙 + 1, 𝑙 ≤ 𝑟

0, 𝑙 > 𝑟
𝐶le (𝑙, 𝑟 ) =

{
0, 𝑙 ≤ 𝑟

𝑙 − 𝑟, 𝑙 > 𝑟

𝐶eq is non-zero when a branch condition 𝑙 == 𝑟 holds; it defines the
cost metric for making this condition false. On the other hand, 𝐶eq
defines the cost metric for making the same branch condition true.
The arguments 𝑙 and 𝑟 denote the left and right operands of the
operator. The notation is similar for all other functions.

Based on these cost functions, our instrumentation evaluates
two cost metrics before every branch condition in the program

1 contract Wallet {

2 address private owner;

3 uint[] private bonusCodes;

4

5 ...

6

7 function PopCode () public {

8 require (0 <= bonusCodes.length);
9 bonusCodes.length --;
10 }

11

12 function SetCodeAt(uint idx , uint c) public {

13 require(idx < bonusCodes.length);
14 minimize (|&( bonusCodes[idx]) - 0xffcaffee |);

15 bonusCodes[idx] = c;

16 }

17

18 function Destroy () public {

19 require(msg.sender == owner);

20 selfdestruct(msg.sender);
21 }

22 }

Figure 3: Example of a memory-access vulnerability.

under test. The metrics depend on the comparison operator used
in the branch condition. The cost functions for other comparison
operators, i.e., != (ne), > (gt), and >= (ge), are easily derived from the
functions above, and our tool supports them. Note that our imple-
mentation works on the bytecode, where logical operators, like &&

or ||, are expressed as branch conditions. We, thus, do not define
cost functions for such operators, but they are also straightforward.

Observe that the inputs of the above cost functions are the
operands of comparison operators, and not program inputs. This
makes the cost functions precise, that is, when a cost is minimized,
the corresponding branch is definitely flipped. Approximation can
only be introduced when computing the correlation between a
program input and a cost (Sect. 4.2).

Memory accesses. To illustrate the flexibility of our cost met-
rics, we now show another instantiation that targets a vulnerability
specific to smart contracts. Consider the example in Fig. 3. (The grey
box should be ignored for now.) It is a simplified version of code
submitted to the Underhanded Solidity Coding Contest (USCC)
in 2017 [10]. The USCC is a contest to write seemingly harmless
Solidity code that, however, disguises unexpected vulnerabilities.

Fig. 3 implements a wallet that has an owner and stores an array
of bonus codes (lines 2–3). Contract functions (not all shown) allow
bonus codes to be pushed, popped, or updated. The last function
(line 18) must be called only by the owner and causes the wallet to
self-destruct after transferring all assets to the owner.

The vulnerability in this code is caused by the precondition on
line 8, which should require the array length to be greater than
zero (not equal) before popping an element. When the array is
empty, the statement on line 9 causes the (unsigned) array length to
underflow; this effectively disables the bound-checks of the array,
allowing elements to be stored anywhere in the persistent state of
the contract. Therefore, by setting a bonus code at a specific index
in the array, an attacker could overwrite the address of the owner
to their own address. Then, by destroying the wallet, the attacker
would transfer all assets to their account. In a more optimistic
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scenario, the owner could be accidentally set to an invalid address,
in which case the wallet assets would become inaccessible.

To detect such vulnerabilities, a greybox fuzzer can, for every
assignment to the persistent state of a contract, pick an arbitrary ad-
dress and compare it to the target address of the assignment. When
these two addresses happen to be the same, it is very likely that the
assignment may also target other arbitrary addresses, perhaps as a
result of an exploit. A fuzzer without input prediction, however, is
only able to detect these vulnerabilities by chance, and chances are
extremely low that the target address of an assignment matches
an arbitrarily selected address, especially given that these are 32
bytes long. In fact, when disabling Harvey’s input prediction, the
vulnerability in the code of Fig. 3 is not detected within 12h.

To direct the fuzzer toward executions that could reveal such
vulnerabilities, we define the following cost function:

𝐶st (lhsAddr, addr) = |lhsAddr − addr |

Here, lhsAddr denotes the address of the left-hand side of an as-
signment to persistent state (that is, excluding assignments to local
variables) and addr an arbitrary address. 𝐶st is non-zero when
lhsAddr and addr are different, and therefore, optimal executions
are those where the assignment writes to the arbitrary address.

Our instrumentation evaluates the corresponding cost metric
before every assignment to persistent state. An example is shown
on line 14 of Fig. 3. (We use the & operator to denote the address
of bonusCodes[idx].) Harvey with input prediction detects the
vulnerability in Fig. 3 within 25s and after generating 43’950 inputs.

Detecting such vulnerabilities based on whether an assignment
could target an arbitrary address might generate false positives
when the address is indeed an intended target of the assignment.
However, the probability of this occurring in practice is extremely
low (again due to the address length). So far, we have not encoun-
tered any false positives.

In general, defining other cost functions is straightforward as
long as there is an expressible measure for the distance between a
current execution and an optimal one.

5 DEMAND-DRIVEN SEQUENCE FUZZING

Recall from Sect. 3.2 that Harvey uses demand-driven sequence
fuzzing to set up the persistent state for testing the last transaction
in the sequence. The goal is to explore new paths in the function
that this transaction invokes, and thus, detect more bugs. Directly
fuzzing the state, for instance, variables x and y of Fig. 2, might
lead to false positives. Nonetheless, Harvey uses this aggressive
approachwhen fuzzing transaction sequences to determinewhether
a different persistent state can increase path coverage.

The key idea is to generate longer transaction sequences on
demand. This is achieved by fuzzing a transaction sequence in two
modes: regular, which does not directly fuzz the persistent state,
and aggressive, which is enabled with a small probability 𝑝𝑎 (0.125
in our implementation) and may fuzz the persistent state directly.
If Harvey is able to increase coverage of the last transaction in
the sequence using the aggressive mode, the corresponding input
is discarded (because it might lead to false positives), but longer
sequences are generated when running in regular mode later.

For instance, when fuzzing a transaction that invokes Bar from
Fig. 2, Harvey temporarily considers x and y as fuzzable inputs of

the function. If this aggressive fuzzing does not discover any more
paths, Harvey does not generate additional transactions before the
invocation of Bar . If, however, the aggressive fuzzing discovers new
paths, our tool generates and fuzzes transaction sequences whose
last transaction calls Bar . That is, longer transaction sequences are
only generated when they might be able to set up the state before
the last transaction such that its coverage is increased.

For our example, Harvey generates the sequence SetY (42) ,
CopyY(), and Bar() that reaches the assertion in about 29s. At
this point, the fuzzer stops exploring longer sequences for contract
Foo because aggressively fuzzing the state cannot further increase
the already achieved coverage.

We make two important observations. First, Harvey is so quick
in finding the right argument for SetY due to input prediction.
Second, demand-driven sequence fuzzing relies on path identifiers
to span no more than a single transaction. Otherwise, aggressive
fuzzing would not be able to determine if longer sequences may
increase coverage of the contract.

Mutation operations. To generate and fuzz sequences of trans-
actions, Harvey applies three mutation operations to a given trans-
action 𝑡 : (1) fuzz transaction 𝑡 , which fuzzes the inputs of its in-
vocation, (2) insert a new transaction before 𝑡 , and (3) replace the
transactions before 𝑡 with another sequence.

Harvey uses two pools for efficiently generating new transac-
tions or sequences, respectively. These pools store transactions
or sequences that are found both to increase coverage of the con-
tract under test and to modify the persistent state in a way that
has not been explored before. Harvey selects new transactions or
sequences from these pools when applying the second and third
mutation operations.

6 EXPERIMENTAL EVALUATION

In this section, we evaluate Harvey on real-world smart contracts.

6.1 Benchmark Selection

Merely fuzzing millions of contracts provides little insight about
Harvey’s effectiveness. Instead, we perform a thorough evaluation
on 27 benchmarks from related work [84] and a large benchmark
from a client engagement (see RQ4). The corresponding paper [84]
provides an overview of the 27 benchmarks, the projects fromwhich
they originate, and outlines how the benchmarks were selected.

Generally, the benchmarks were selected by following published
guidelines on evaluating fuzzers [48]. The authors did not simply
scrape contracts from the blockchain since most are created with
no quality control and many contain duplicates—contracts without
assets or users are essentially dead code. Moreover, good-quality
contracts typically have dependencies (e.g., on libraries or other
contracts) that would likely not be scraped with them.

In terms of size, most contracts are a few hundred lines of code
(up to ∼3’000 lines) [84]. Nonetheless, they are complex programs,
each occupying at least a couple of auditors for weeks. More im-
portantly, their size does not necessarily represent how difficult it
is for a fuzzer to test all paths. For instance, Fig. 1 is very small, but
AFL fails to cover all paths within 12h.
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6.2 Experimental Setup

We ran different configurations of Harvey and compared the
achieved coverage and required time to detect a bug.

Our evaluation focuses on detecting two types of bugs. First,
we detect crashes due to assertion violations (SWC-110 according
to the Smart Contract Weakness Classification [8]); in addition to
user-provided checks, these include checked errors, such as division
by zero or out-of-bounds array access, inserted by the compiler. At
best, these bugs cause a transaction to be aborted and waste gas
fees. In the worst case, they prevent legitimate transactions from
succeeding, putting assets at risk. For instance, a user may not be
able to claim an auctioned item due to an out-of-bounds error in the
code that iterates over an array of bidders to determine the winner.
Second, we detect memory-access errors (SWC-124 [8]) that may
allow an attacker to modify the persistent state of a contract (Fig. 3).
In practice, Harvey covers a wide range of test oracles3, such as
reentrancy and overflows, and also supports custom oracles.

For bug de-duplication, it uses a simple approach (much more
conservative than AFL): two bugs of the same type are duplicates
if they occur at the same program location.

For each configuration, we performed 24 runs, each with inde-
pendent random seeds, an all-zero seed input, and a time limit of
1h; we report medians unless stated otherwise. In addition, we per-
formedWilcoxon-Mann-Whitney U tests to determine if differences
in medians are statistically significant based on reported p-values.

We used an Intel® Xeon® CPU @ 2.67GHz 24-core machine
with 48GB running Debian Linux 9.11.

6.3 Results

We evaluateHarvey’s underlying techniques through four research
questions. The first two focus on input prediction, the third on
demand-driven sequence fuzzing, and the fourth assessesHarvey’s
effectiveness in testing custom properties in an industrial setting.

RQ1: Effectiveness of input prediction. To evaluate input
prediction, we compare with a baseline (configuration A), which
only disables prediction. The first column of Tab. 2 identifies the
benchmark, the second the bug, and the third the bug type according
to the SWC (110 stands for assertion violations and 124 for memory-
access errors).

The fourth and fifth columns show the median time (in secs)
after which each unique bug was found by configurations A and
B within the time limit—B differs from A only by enabling input
prediction. Configuration B finds 39 out of 46 bugs significantly faster
than A. We report the speed-up factor in the sixth column and the
significance level, i.e., p-value, in the seventh (we use 𝑝 < 0.05). As
shown in the table, configuration B is faster than A by a factor of
up to 872 (median 5.65). The last two columns compute the Vargha-
Delaney A12 effect sizes [79]. Intuitively, these show the probability
of configuration A being faster than B and vice versa. Note that, to
compute the median time, we conservatively counted 3’600s for a
given run even if the bug was not found. However, on average, B
detects 9 more bugs.

Tab. 3 compares A and B with respect to instruction coverage.
For 23 out of 27 benchmarks, B achieves significantly higher coverage.
The results for path coverage are very similar.
3SWC-101, 104, 107, 110, 113, 123, 124, 127

Table 2: Comparing time-to-bug between configuration A

(w/o input prediction) and B (w/ input prediction).

BID Bug ID SWC ID TA TB

TA

TB

p A12A A12B

2 b6e44d03 SWC-110 10.41 0.43 23.96 < 0.001 0.05 0.95
2 413fb2d5 SWC-110 43.30 8.43 5.14 < 0.001 0.15 0.85
3 e8238b35 SWC-110 12.79 0.52 24.42 < 0.001 0.06 0.94
3 1f3f0ef2 SWC-110 25.19 6.25 4.03 < 0.001 0.19 0.81
4 8886bf98 SWC-110 28.15 7.61 3.70 < 0.001 0.16 0.84
4 48dacbdf SWC-110 16.63 0.99 16.81 < 0.001 0.02 0.98
5 38ba300c SWC-110 14.25 0.61 23.35 < 0.001 0.03 0.97
5 2df51bba SWC-110 24.16 6.01 4.02 < 0.001 0.15 0.85
8 2b1c0cec SWC-110 3600.00 306.56 11.74 < 0.001 0.00 1.00
13 f3e720de SWC-110 11.48 5.70 2.01 0.003 0.25 0.75
13 c1f84a45 SWC-110 18.09 5.42 3.34 < 0.001 0.09 0.91
13 9b1b09cf SWC-110 24.59 4.75 5.18 < 0.001 0.08 0.92
13 f3cedeff SWC-110 13.73 4.88 2.82 < 0.001 0.07 0.93
15 a6b732ec SWC-110 3600.00 7.28 494.22 < 0.001 0.00 1.00
15 f8de6e5 SWC-110 3600.00 559.44 6.44 < 0.001 0.00 1.00
15 5e9050f SWC-110 3600.00 3600.00 1.00 1.000 0.50 0.50
17 2247827e SWC-110 3600.00 548.00 6.57 < 0.001 0.02 0.98
18 ac098c9e SWC-110 24.31 4.99 4.87 < 0.001 0.09 0.91
18 36163f3f SWC-110 2003.39 3600.00 0.56 0.006 0.70 0.30
19 effbd6b SWC-110 29.16 6.94 4.20 < 0.001 0.15 0.85
19 5a3b5bb SWC-110 11.29 0.53 21.45 < 0.001 0.07 0.93
19 4106286f SWC-110 23.82 5.07 4.70 < 0.001 0.09 0.91
19 2375ebdd SWC-110 16.70 5.76 2.90 < 0.001 0.15 0.85
19 bc4c025e SWC-110 25.41 2.37 10.71 < 0.001 0.06 0.94
19 95379a77 SWC-110 30.45 4.98 6.12 < 0.001 0.11 0.89
19 a2f1b5aa SWC-110 12.83 1.24 10.31 < 0.001 0.04 0.96
22 58e7ec73 SWC-110 6.30 1.02 6.15 < 0.001 0.18 0.82
22 aabc1e28 SWC-124 3600.00 1503.38 2.39 < 0.001 0.15 0.85
23 59a59c1e SWC-110 3600.00 392.09 9.18 < 0.001 0.00 1.00
23 6b2d3b36 SWC-110 3600.00 392.62 9.17 < 0.001 0.00 1.00
24 8fddbdb2 SWC-110 1.85 4.15 0.44 0.585 0.45 0.55
24 20c005cb SWC-110 77.47 7.43 10.43 < 0.001 0.15 0.85
24 3fdc5722 SWC-110 2.52 4.04 0.62 0.464 0.44 0.56
24 358907d3 SWC-110 5.25 5.03 1.04 0.228 0.40 0.60
24 f9967d0a SWC-110 1.74 4.04 0.43 0.585 0.55 0.45
24 329bb319 SWC-110 260.64 13.78 18.91 < 0.001 0.12 0.88
24 3716d2b7 SWC-110 662.44 9.86 67.21 < 0.001 0.04 0.96
24 9cb62e3e SWC-110 3600.00 4.13 872.15 < 0.001 0.00 1.00
26 7ef333fe SWC-110 28.58 7.03 4.06 < 0.001 0.06 0.94
27 a4d82705 SWC-110 77.52 5.31 14.59 < 0.001 0.07 0.93
27 94fb0959 SWC-110 62.20 13.62 4.57 < 0.001 0.09 0.91
27 79788ab0 SWC-110 141.01 43.80 3.22 0.001 0.22 0.78
27 f546c070 SWC-110 1645.96 168.74 9.75 < 0.001 0.12 0.88
27 874af19f SWC-110 3600.00 15.16 237.45 < 0.001 0.00 1.00
27 1620e17f SWC-110 3600.00 459.52 7.83 < 0.001 0.00 1.00
27 479b458f SWC-110 3600.00 3600.00 1.00 0.001 0.29 0.71

Median 28.37 6.13 5.65

Input prediction is very effective in both detecting bugs
faster and achieving higher coverage.

RQ2: Effectiveness of iterative input prediction. Configu-
ration C differs from B in that it does not iteratively apply the
basic approximation step of the Secant method in case it fails to
minimize a cost metric. For artificial examples with non-linear
branch conditions (e.g., a^4 + a^2 == 228901770), we were able
to show that this configuration is less efficient than B in finding
bugs. However, for our benchmarks, there were no significant time
differences between B and C for detecting 45 of 46 bugs. Similarly,
in only 2 benchmarks configuration B achieved significantly higher
instruction coverage. However, in both cases the differences were
relatively small (i.e., less than 10 instructions).

During our experiments with C, we measured the success rate of
one-shot cost minimization to range between 95% and 100% (median
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Table 3: Comparing instruction coverage for configurations

A (w/o input prediction) and B (w/ input prediction).

BID CA CB

CB

CA

p A12A A12B

1 3868.00 3868.00 1.00 0.061 0.36 0.64
2 3064.00 4004.00 1.31 < 0.001 0.00 1.00
3 2575.00 3487.00 1.35 < 0.001 0.02 0.98
4 2791.00 3753.00 1.34 < 0.001 0.00 1.00
5 2567.00 3501.00 1.36 < 0.001 0.00 1.00
6 1832.00 1943.00 1.06 < 0.001 0.00 1.00
7 1524.00 1524.00 1.00 < 0.001 0.50 0.50
8 1051.00 2247.50 2.14 < 0.001 0.00 1.00
9 2694.00 3378.00 1.25 < 0.001 0.00 1.00
10 6805.00 7470.00 1.10 < 0.001 0.00 1.00
11 7295.00 8588.00 1.18 < 0.001 0.00 1.00
12 2816.00 5013.00 1.78 < 0.001 0.00 1.00
13 1585.00 4510.00 2.85 < 0.001 0.00 1.00
14 3772.50 4493.00 1.19 < 0.001 0.00 1.00
15 3488.00 4720.50 1.35 < 0.001 0.00 1.00
16 496.00 496.00 1.00 < 0.001 0.50 0.50
17 1832.00 2757.00 1.50 < 0.001 0.00 1.00
18 2767.00 3481.00 1.26 < 0.001 0.00 1.00
19 2418.00 2611.00 1.08 < 0.001 0.00 1.00
20 1635.00 3028.50 1.85 < 0.001 0.00 1.00
21 434.00 440.00 1.01 < 0.001 0.00 1.00
22 919.00 1274.00 1.39 < 0.001 0.00 1.00
23 1344.00 2095.00 1.56 < 0.001 0.00 1.00
24 687.00 754.00 1.10 < 0.001 0.15 0.85
25 1082.00 1192.00 1.10 < 0.001 0.00 1.00
26 1606.00 1606.00 1.00 < 0.001 0.50 0.50
27 4354.00 5763.00 1.32 < 0.001 0.00 1.00

Median 2418.00 3378.00 1.26

100%). This suggests that complex branch conditions are not very
common in real-world smart contracts.

Even one iteration of the Secant method is successful in
predicting inputs. This suggests that the vast majority of
branch conditions in our diverse benchmarks are linear (or
piece-wise linear) with respect to the program inputs.

RQ3: Effectiveness of demand-driven sequence fuzzing.To
evaluate this research question, we compare configuration Awith D,
which differs from A by disabling demand-driven sequence fuzzing.
In particular, D tries to eagerly explore all paths in all possible trans-
action sequences, where paths span all transactions. Tab. 4 shows a
comparison between A and D with respect to time-to-bug for bugs
that were found by at least one configuration. As shown in the table,
A is significantly faster than D in detecting 24 out of 35 bugs, with
a speed-up of up to 100x. Note that 22 of those bugs require more
than a single transaction to be detected. Interestingly, configuration
A is also significantly faster for 2 bugs that require only a single
transaction; we suspect that this is caused by the large number of
irrelevant inputs that configuration D adds to the test suite. We
observe a similar trend for instruction coverage: configuration A
achieves significantly higher coverage for 15 out of 27 benchmarks.

In total, 28 out of 35 bugs require more than one transaction to
be found. This suggests that real contracts need to be tested with
sequences of transactions, and consequently, there is much to be
gained from pruning techniques like ours. Our experiments with D
also confirm that, when paths span all transactions, the test suite
becomes orders-of-magnitude larger.

Table 4: Comparing time-to-bug between configuration A

(w/ demand-driven sequence fuzzing) and D (w/o demand-

driven sequence fuzzing).

BID Bug ID SWC ID TA TD

TA

TD

p A12A A12D

2 b6e44d03 SWC-110 10.41 63.64 0.16 < 0.001 0.86 0.14
2 413fb2d5 SWC-110 43.30 2877.12 0.02 < 0.001 0.81 0.19
3 e8238b35 SWC-110 12.79 35.65 0.36 0.024 0.69 0.31
3 1f3f0ef2 SWC-110 25.19 79.05 0.32 0.047 0.67 0.33
4 8886bf98 SWC-110 28.15 456.12 0.06 < 0.001 0.80 0.20
4 48dacbdf SWC-110 16.63 68.36 0.24 0.001 0.78 0.22
5 38ba300c SWC-110 14.25 49.89 0.29 0.006 0.73 0.27
5 2df51bba SWC-110 24.16 124.37 0.19 0.025 0.69 0.31
13 f3e720de SWC-110 11.48 12.82 0.90 0.628 0.54 0.46
13 c1f84a45 SWC-110 18.09 11.28 1.60 0.106 0.36 0.64
13 9b1b09cf SWC-110 24.59 25.36 0.97 0.829 0.48 0.52
13 f3cedeff SWC-110 13.73 11.39 1.21 0.503 0.44 0.56
15 5e9050f SWC-110 3600.00 3600.00 1.00 0.021 0.60 0.40
18 ac098c9e SWC-110 24.31 18.14 1.34 0.781 0.48 0.52
18 36163f3f SWC-110 2003.39 3600.00 0.56 < 0.001 0.79 0.21
19 effbd6b SWC-110 29.16 174.63 0.17 0.002 0.76 0.24
19 5a3b5bb SWC-110 11.29 135.14 0.08 < 0.001 0.91 0.09
19 4106286f SWC-110 23.82 57.13 0.42 0.056 0.66 0.34
19 2375ebdd SWC-110 16.70 58.44 0.29 0.170 0.62 0.38
19 bc4c025e SWC-110 25.41 33.70 0.75 0.190 0.61 0.39
19 95379a77 SWC-110 30.45 284.46 0.11 0.001 0.79 0.21
19 a2f1b5aa SWC-110 12.83 24.99 0.51 0.028 0.69 0.31
22 58e7ec73 SWC-110 6.30 6.13 1.03 0.490 0.56 0.44
24 8fddbdb2 SWC-110 1.85 8.96 0.21 0.001 0.77 0.23
24 20c005cb SWC-110 77.47 1935.29 0.04 < 0.001 0.80 0.20
24 3fdc5722 SWC-110 2.52 5.94 0.42 0.028 0.69 0.31
24 358907d3 SWC-110 5.25 6.12 0.86 0.813 0.52 0.48
24 f9967d0a SWC-110 1.74 4.21 0.41 0.004 0.74 0.26
24 329bb319 SWC-110 260.64 3600.00 0.07 < 0.001 0.93 0.07
24 3716d2b7 SWC-110 662.44 3600.00 0.18 < 0.001 0.88 0.12
26 7ef333fe SWC-110 28.58 3600.00 0.01 < 0.001 1.00 0.00
27 a4d82705 SWC-110 77.52 3600.00 0.02 < 0.001 1.00 0.00
27 94fb0959 SWC-110 62.20 3600.00 0.02 < 0.001 1.00 0.00
27 79788ab0 SWC-110 141.01 3600.00 0.04 < 0.001 0.97 0.03
27 f546c070 SWC-110 1645.96 3600.00 0.46 < 0.001 0.94 0.06

Median 24.31 68.36 0.29

Most bugs require invoking multiple transactions to be
revealed. Demand-driven sequence fuzzing is effective in
pruning the search space of transaction sequences; as a
result, it detects bugs and achieves coverage faster.

RQ4: Effectiveness in industrial setting. We now describe
our experience with using Harvey during a client engagement.
The first version of the client’s smart contract system is deployed
on the Ethereum blockchain and consists of over 6’000 lines of So-
lidity (excl. libraries). Their test environment features a single main
contract and more than 50 additional contracts (incl. several tokens)
with which it may interact. In collaboration with the client, we de-
veloped 16 functional properties and instrumented the contracts
with corresponding checks. We ran 12h fuzzing campaigns (for 24
random seeds) with their existing test deployment as the initial
state. We set up Harvey to generate sequences of transactions that
invoke the main contract as well as three additional contracts.

Fig. 4 shows instruction coverage over time for configurations A,
B, and D. B is clearly the best and covers up to 48’376 instructions
and 9’118 paths (requiring up to 8 transactions). B also detects 12
property violations (requiring up to 6 transactions), which is 2x
and 12x more violations than A and D. Manual inspection of the
violations revealed subtle omissions in the properties, not the code.
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Figure 4: Instruction coverage over time for configurations

A, B, and D. Each plot shows the mean coverage (dark) and

the 95% confidence interval (lighter).

6.4 Threats to Validity

External validity. Our results may not generalize to all smart
contracts or program types [67]. However, we evaluated our tech-
nique on a diverse set of contracts from a wide range of domains.
We, thus, believe that this selection significantly helps to ensure
generalizability. To further improve external validity, we use pub-
licly available benchmarks from related work [84].

Internal validity.Another potential issue has to dowithwhether
systematic errors are introduced in the setup [67]. When comparing
configurations, we always used the same seed inputs in order to
avoid bias in the exploration.

Construct validity. Construct validity ensures that the evalua-
tion measures what it claims. We compare several configurations of
Harvey, and thus, ensure that any improvements are exclusively
due to techniques enabled in a given configuration.

7 RELATEDWORK

Harvey is an industrial greybox fuzzer for smart contracts. It incor-
porates two key techniques, input prediction and demand-driven
sequence fuzzing, that improve its effectiveness.

Greybox fuzzing. There are several techniques that aim to di-
rect greybox fuzzing toward certain parts of the search space, such
as low-frequency paths [17], vulnerable paths [64], deep paths [70],
or specific sets of program locations [16]. There are also tech-
niques that boost fuzzing by smartly selecting and mutating in-
puts [23, 65, 82], or by searching for new inputs using iterative
optimization algorithms, such as gradient descent [25], with the
goal of increasing branch coverage.

In general, input prediction could be used in combination with
these techniques. In comparison, our approach predicts concrete
input values based on two previous executions. To achieve this, we
rely on additional, but still lightweight, instrumentation.

Whitebox fuzzing. Whitebox fuzzing is implemented in many
tools, like EXE [21], jCUTE [66], Pex [76], BitBlaze [68], Apollo [13],
S2E [27], and Mayhem [22], and comes in different flavors, such as
probabilistic [36] or model based [62].

As discussed earlier, our input-prediction technique does not
rely on any program analysis or constraint solving, and our instru-
mentation is more lightweight.

Hybrid fuzzing. Hybrid fuzzers combine fuzzing with other
techniques to join their benefits. For example, Dowser [42] uses
static analysis to identify code regions with potential buffer over-
flows. Similarly, BuzzFuzz [34] uses taint tracking to discover which
input bytes flow to “attack points”. Hybrid Fuzz Testing [60] first
runs symbolic execution to find inputs that lead to “frontier nodes”
and then applies fuzzing on these inputs. Driller [71], on the other
hand, starts with fuzzing and uses symbolic execution when it needs
help in generating inputs that satisfy complex checks.

In contrast, input prediction extends greybox fuzzing without
relying on static analysis or whitebox fuzzing. Harvey could, how-
ever, benefit from hybrid-fuzzing approaches.

Optimization in testing.Miller and Spooner [56] were the first
to use optimization methods in generating test data, and in particu-
lar, floating-point inputs. It was not until 1990 that these ideas were
extended by Korel [49]. Such optimization methods have recently
been picked up again [54], enhanced, and implemented in testing
tools, such as FloPSy [52], CORAL [69], EvoSuite [32], AUSTIN [51],
CoverMe [33], Angora [25], and Eclipser [28]. Most of these tools
use fitness functions to determine the distance from a target and
attempt to minimize them. The minimization procedure is typically
iterative, e.g., by using hill climbing, simulated annealing, or ge-
netic algorithms [47, 55, 61]. In contrast, for linear cost relations,
the Secant method finds roots in a single step.

Our prediction technique is inspired by these approaches but is
applied in the context of greybox fuzzing. When failing to minimize
a cost metric, Harvey falls back on standard greybox fuzzing.

Method-call sequence generation. For testing object-oriented
programs, it is often necessary to generate complex input objects
using sequences of method calls. There are many approaches [35,
44, 59, 74, 75, 77, 85, 86] that automatically generate such sequences
using techniques such as dynamic inference, static analysis, or evo-
lutionary testing. In contrast, demand-driven sequence fuzzing only
relies on greybox fuzzing and targets smart contracts.

Programanalysis for smart contracts.There exist various ap-
plications of program analysis to smart contracts, such as symbolic
execution, static analysis, and verification [12, 15, 18, 24, 26, 31, 39–
41, 46, 50, 53, 57, 58, 78, 80, 81]. The work most closely related
to ours is the blackbox fuzzer ContractFuzzer [45], the property-
based testing tool Echidna [2], and the imitation-learning fuzzer
ILF [43]. In contrast to these, our technique applies greybox fuzzing.
From these, Echidna is the only tool deployed in industry4, but its
fuzzing technique significantly differs from Harvey, for instance,
in requiring an API description of contracts under test.

8 CONCLUSION

We presented Harvey, an industrial greybox fuzzer for smart con-
tracts. During its development, we encountered two key challenges
that we alleviate with input prediction and demand-driven sequence
fuzzing. Our experiments show that both techniques significantly
improve Harvey’s effectiveness on both existing benchmarks and
a large, industrial benchmark.

4https://www.trailofbits.com/

https://www.trailofbits.com/
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