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ABSTRACT
Most techniques to detect program errors, such as testing,
code reviews, and static program analysis, do not fully verify
all possible executions of a program. They leave executions
unverified when they do not check an execution path, check
it under certain unjustified assumptions (such as the absence
of arithmetic overflow), or fail to verify certain properties.
In this paper, we present a technique to complement par-

tial verification results by automatic test case generation.
We annotate programs to reflect which executions have been
verified, and under which assumptions. These annotations
are then used to guide dynamic symbolic execution toward
unverified program executions. Our main contribution is a
code instrumentation that causes dynamic symbolic execu-
tion to abort tests that lead to verified executions, to prune
parts of the search space, and to prioritize tests that lead
to unverified executions. We have implemented our tech-
nique for the .NET static analyzer Clousot and the dynamic
symbolic execution tool Pex. Compared to directly running
Pex on the annotated programs without our instrumenta-
tion, our approach produces smaller test suites (by up to
19.2%), covers more unverified executions (by up to 7.1%),
and reduces testing time (by up to 52.4%).

1. INTRODUCTION
Modern software projects use a variety of techniques to

detect program errors, such as testing, code reviews, and
static program analysis [30]. In practice, none of these tech-
niques check all possible executions of a program. They
often leave entire paths unverified (for instance, when a test
suite does not achieve full path coverage), fail to verify cer-
tain properties (such as complex assertions), or verify some
paths under assumptions (such as the absence of arithmetic
overflow) that might not hold on all executions of the path.
Making such assumptions is necessary in code reviews to re-
duce the complexity of the task; it is also common in static
program analysis to improve the precision, performance, and
modularity of the analysis [12], and because some program
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1 void Deposit (int amount ) {
2 if ( amount <= 0 || amount > 50000) {
3 ReviewDeposit ( amount );
4 } else {
5 balance = balance + amount ;
6 if ( balance > 10000) {
7 SuggestInvestment ();
8 }
9 }

10 assert balance >= old( balance );
11 }

Figure 1: Example illustrating partial verification
results. Techniques that assume that the addition
on line 5 will not overflow might miss violations of
the assertion on line 10. We use the assertion to
make the intended behavior explicit; the old key-
word indicates that an expression is evaluated in the
pre-state of the method. balance is an integer field
declared in the enclosing class. We assume methods
ReviewDeposit and SuggestInvestment to be correct.

features elude static checking [36].
Automatic test case generation via dynamic symbolic ex-

ecution (DSE) [27, 9], also called concolic testing [38], sys-
tematically explores a large number of program executions
and, thus, effectively detects errors missed by other tech-
niques. However, simply applying DSE in addition to other
techniques leads to redundancy when executions covered by
DSE have already been verified using other techniques. In
this case, the available testing time is wasted on execu-
tions that are known to be correct rather than exploring
previously-unverified executions. This redundancy is espe-
cially problematic when DSE is used to complement static
analyzers because static techniques can check a large frac-
tion of all possible program executions and, thus, many or
even most of the executions covered by DSE are already
verified.
Method Deposit in Fig. 1 illustrates this problem. A re-

viewer or static analyzer that checks the implementation
under the assumption that the addition on line 5 will not
overflow might miss violations of the assertion on line 10.
Applying DSE to the method will try to explore six different
paths through the method (there are three paths through the
conditionals, each combined with two possible outcomes for
the assertion), in addition to all the paths through the called
methods ReviewDeposit and SuggestInvestment. Assum-
ing that these two methods are correct, only one of all these
paths reveals an error, namely the path that is taken when
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amount is between 0 and 50,000, and balance is large enough
for the addition on line 5 to overflow. All other generated
test cases are redundant because they lead to executions
that have already been verified. In particular, if the called
methods have complex control flow, DSE might not detect
the error because it reaches a timeout before generating the
only relevant test case.
In this paper, we present a technique to guide DSE to-

ward unverified program executions. Building on our ear-
lier work [11], we use program annotations to make explicit
which assertions in a program have already been verified,
and under which assumptions. These annotations can be
generated automatically by a static analysis [12] or inserted
manually, for instance, during a code review. The main con-
tribution of this paper is a code instrumentation of the unit
under test that (1) detects redundant test cases early dur-
ing their execution and aborts them, (2) reduces the search
space for DSE by pruning paths that have been previously
verified, and (3) prioritizes test cases that cover unverified
executions. This instrumentation is based on an efficient
static inference that propagates information that charac-
terizes unverified executions higher up in the control flow,
where it may prune the search space more effectively.
Our technique works for modular and whole-program ver-

ification, and can be used to generate unit or system tests.
For concreteness, we present it for modular verification and
unit testing. In particular, we have implemented our ap-
proach for Microsoft’s .NET static checker Clousot [23], a
modular static analysis, and the DSE tool Pex [39], a test
case generator for unit tests. Our experiments demonstrate
that, compared to classical DSE, our approach produces
smaller test suites, explores more unverified executions, and
reduces testing time.

Outline. We give an overview of our approach in Sect. 2.
Sect. 3 explains how we infer the code instrumentation from
partial verification results. Our experimental results are pre-
sented in Sect. 4. We discuss related work in Sect. 5 and
conclude in Sect. 6.

2. APPROACH
In this section, we summarize an annotation language that

we have developed in earlier work [11] to express partial
verification results, and then illustrate how we use these
annotations to guide DSE toward unverified executions. The
details of the approach will be explained in the next section.

2.1 Verification annotations
In order to encode partial verification results, we intro-

duce two kinds of annotations: An assumed statement of the
form assumed P as a expresses that an analysis assumed
property P to hold at this point in the code without check-
ing it. The assumption identifier a uniquely identifies this
statement. In order to record verification results, we use as-
sertions of the form assert P verified A, which express
that property P has been verified under condition A. The
supposition A is a boolean condition over assumption iden-
tifiers, each of which is introduced in an assumed statement.
It is the conjunction of the identifiers for the assumptions
used to verify P , or false if P was not verified. When sev-
eral verification results are combined (for instance, from a
static analysis and a code review), A is the disjunction of the
assumptions made during each individual verification. We

1 void Deposit (int amount ) {
2 var a = true;
3 if ( amount <= 0 || 50000 < amount ) {
4 assume !a;
5 ReviewDeposit ( amount );
6 } else {
7 assumed noOverflowAdd(balance, amount) as a;

8 a = a && noOverflowAdd(balance, amount);
9 assume !a;

10 balance = balance + amount ;
11 if (10000 < balance ) {
12 SuggestInvestment ();
13 }
14 }
15 assume !a || balance >= old(balance);
16 assert balance >= old( balance ) verified a;
17 }

Figure 2: The instrumented version of the method
from Fig. 1. The dark boxes show the annotations
generated by the static analyzer. The assumed state-
ment makes explicit that the analyzer assumed that
the addition on line 10 does not overflow. The
verified annotation on the assertion on line 16 ex-
presses that the assertion was verified under this
(unjustified) assumption. The two annotations are
connected via the assumption identifier a, which
uniquely identifies the assumed statement. The light
boxes show the instrumentation that we infer from
the annotations and that prunes redundant tests.

record verification results for all assertions in the code, in-
cluding implicit assertions such as a receiver being non-null
or an index being within the bounds of an array.
We assume here that a static analyzer records the as-

sumptions it made during the analysis, which assertions it
verified, and under which assumptions. We equipped Mi-
crosoft’s .NET static analyzer Clousot [23] with this func-
tionality [12]. Among other unjustified assumptions, Clousot
ignores arithmetic overflow and, thus, misses the potential
violation of the assertion on line 10 of Fig. 11. This par-
tial verification result is expressed by the annotations in
the dark boxes of Fig. 2 (the light boxes will be discussed
below). The assumed statement makes explicit that the ad-
dition on line 10 was assumed not to overflow (the predicate
noOverflowAdd can be encoded as equality of an integer and
a long-integer addition); the verified annotation on the as-
sertion on line 16 expresses that the assertion was verified
under this (unjustified) assumption.
The meaning of verification annotations can be defined in

terms of assignments and assume statements, which makes
the annotations easy to support by a wide range of static and
dynamic tools. For each assumption identifier, we declare a
boolean variable, which is initialized to true. For modular
analyses, assumption identifiers are local variables initialized
at the beginning of the enclosing method (line 2 in Fig. 2),
whereas for whole-program analyses, assumption identifiers

1Clousot is modular, that is, reasons about a method
call using the method’s pre- and postcondition; we as-
sume here that the postconditions of ReviewDeposit and
SuggestInvestment state that balance is not decreased.
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are global variables, for instance, initialized at the beginning
of a main method. A statement assumed P as a is encoded
as

a = a && P ;

as illustrated on line 8. That is, the variable a accumulates
the assumed properties for each execution of the assumed
statement. Since assumptions typically depend on the cur-
rent execution state, this encoding ensures that an assump-
tion is evaluated in the state in which it is made rather than
the state in which it is used.
An assertion assert P verified A is encoded as

assume A⇒ P ;
assert P ;

as illustrated on line 15. The assume statement expresses
that, if condition A holds, then the asserted property P
holds as well, which reflects that P was verified under the
supposition A. Consequently, an assertion is unverified if
A is false, the assertion is fully verified if A is true, and
otherwise, the assertion is partially verified.

2.2 Guiding dynamic symbolic execution
To reduce redundancies with prior analyses of the unit

under test, DSE should generate test cases that check each
assertion assert P verified A for the case that the sup-
position A does not hold, because P has been verified to
hold otherwise. DSE can be guided by adding constraints
to path conditions, which will then be satisfied by the gen-
erated test inputs. The assume statement in the encoding
of an assertion contributes such a constraint, reflecting that
only inputs that violate the supposition A may reveal a vi-
olation of the asserted property P . However, these assume
statements do not effectively guide DSE, as we explain next.

assume statements affect DSE in two ways. First, when
the execution of a test case encounters an assume statement
whose condition is false, the execution is aborted. Second,
when an execution encounters an assume statement, its con-
dition is added to the symbolic path condition, ensuring that
subsequent test cases that share the prefix of the execution
path up to the assume statement will satisfy the condition.
Therefore, the effect of an assume statement is larger the
earlier it occurs in the control flow, because early assump-
tions may abort test cases earlier and share the prefix with
more executions.
However, the assume statements we introduce for asser-

tions tend to occur late in the unit under test because asser-
tions often encode postconditions and test oracles. There-
fore, these assumptions do not effectively guide DSE toward
unverified executions. Our example (Fig. 2) illustrates this
problem. First, aborting test cases on line 15, right before
the final assertion, saves almost no execution time. Second,
the various ways to execute the different branches of the
conditionals and the called methods do not share the prefix
before the assume statement and are, thus, not influenced
by it. Consequently, each time DSE determines the next
test case, it is likely to choose inputs that do not overflow,
that is, to test an execution that has already been verified.
In fact, running DSE on the example from Fig. 2 (without
lines 4 and 9, which we discuss below) generates exactly as
many test cases as if there were no prior verification results.
To address this problem, we propagate constraints that

characterize unverified executions higher up in the control

flow, where they can be used to effectively prune redundant
test cases and to prioritize non-redundant test cases, that
is, tests that cover unverified executions.
A test is redundant if the supposition of each assertion

in its execution holds; in this case, all assertions have been
verified. In order to detect redundant tests early, we com-
pute for each program point a sufficient condition for every
execution from this program point onward to be verified.
If this condition holds, we can abort the execution. We
achieve this behavior by instrumenting the unit under test
with assume statements for the negation of the condition,
that is, we assume a necessary condition for the existence of
at least one unverified execution from the assume statement
onward. When the assumption evaluates to false during the
execution of a test, it aborts the test and introduces a con-
straint, which implies that at least one supposition must be
violated, for all other test cases with the same prefix.
The example in Fig. 2 has an assertion with supposition

a at the very end. Consider the program points on lines 4
and 9. At both points, a is a sufficient condition for the
rest of the execution of Deposit to be verified. Since we are
interested in test cases the lead to unverified executions, we
instrument both program points by assuming the negation,
that is, !a. With this instrumentation, any test case that
enters the outer then-branch is aborted since a is always
true at this point, which, in particular, prunes the entire
exploration of method ReviewDeposit. Similarly, any test
case that does not lead to an overflow on line 10 is aborted
on line 9, which prunes the entire exploration of method
SuggestInvestment. So, out of all the test cases gener-
ated by DSE for the un-instrumented Deposit method, only
the one that reveals the error remains; all others are either
aborted early or pruned.
Since the goal of the instrumentation described so far is

to abort or prune redundant test cases, it has to be con-
servative. Any execution that may be unverified cannot be
eliminated without potentially missing bugs; hence, we call
this instrumentation may-unverified instrumentation. If an
execution path contains several assertions, which is com-
mon because of the implicit assertions for dereferencing, ar-
ray access, etc., this instrumentation retains any execution
in which the supposition of at least one of these assertions
does not hold.
Intuitively, test cases that violate the supposition of more

than one assertion have a higher chance to detect an as-
sertion violation. To prioritize such test cases, we devise a
second instrumentation, called must-unverified instrumen-
tation: We compute for each program point a sufficient con-
dition for every execution from this program point onward
to be definitely unverified. If the condition holds, then every
execution from the program point onward contains at least
one assertion, and the suppositions of all assertions in the
execution are false.
When the must-unverified condition is violated, it does

not necessarily mean that the subsequent execution is ver-
ified and, thus, we cannot abort the test case. Therefore, we
instrument the program not by assuming the must-unverified
condition, but instead with a dedicated tryfirst instruc-
tion. This instruction interrupts the execution of the test
case and instructs DSE to generate new inputs that sat-
isfy the must-unverified condition, that is, inputs that have
a higher chance to detect an assertion violation. The in-
terrupted test case is re-generated later, after the execu-
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tions that satisfy the must-unverified condition have been
explored. This exploration strategy prioritizes test cases
that violate all suppositions over those that violate only
some.
Suppose that the Deposit method in Fig. 2 contained an-

other assertion at the very end that has not been verified,
that is, whose supposition is false. In this case, the may-
unverified instrumentation yields true for all prior program
points since every execution is unverified. In this case, this
instrumentation neither aborts nor prunes any test cases. In
contrast, the must-unverified instrumentation infers !a on
line 9. The corresponding tryfirst instruction (not shown
in Fig. 2) gives priority to executions that lead to an overflow
on line 10. However, it does not prune the others since they
might detect a violation of the unverified second assertion
at the end of the method.
The may-unverified and must-unverified instrumentations

have complementary strengths. While the former effectively
aborts or prunes redundant tests, the latter prioritizes those
tests among the non-redundant ones that are more likely to
detect an assertion violation. Therefore, our experiments
show the best results for the combination of both.

3. CONDITION INFERENCE
Our may-unverified and must-unverified conditions reflect

whether the suppositions of assertions further down in the
control flow hold. In that sense, they resemble weakest
preconditions [20]: a may-unverified condition is the nega-
tion of the weakest condition that implies that all supposi-
tions further down hold; a must-unverified condition is the
weakest condition that implies that all suppositions do not
hold. However, existing techniques for computing weakest
preconditions have shortcomings that make them unsuit-
able in our context. For instance, weakest precondition cal-
culi [33] require loop invariants, abstract interpretation [14]
may require expensive fixed-point computations in sophis-
ticated abstract domains, predicate abstraction [29, 4] may
require numerous invocations of a theorem prover for de-
riving boolean programs [5] from the original program, and
symbolic execution [31] struggles with path explosion, for
instance, in the presence of input-dependent loops.
In this section, we present two efficient instrumentations

that approximate the may-unverified and must-unverified
conditions of a unit under test. For this purpose, we syn-
tactically compute a non-deterministic abstraction of the
unit under test. This abstraction is sound, that is, each
execution of the concrete program is included in the set of
executions of the abstract program. Therefore, a condition
that guarantees that all suppositions hold (or are violated)
in the abstract program provides the same guarantee for the
concrete program. The may-unverified and must-unverified
conditions for the abstract program can be computed effi-
ciently using abstract interpretation, and can then be used
to instrument the concrete program.

3.1 Abstraction
We abstract a concrete program to a boolean program [5],

where all boolean variables are assumption identifiers. In
the abstract program, all expressions that do not include
assumption identifiers are replaced by non-deterministically
chosen values, which, in particular, replaces conditional con-
trol flow by non-determinism. Moreover, the abstraction re-
moves assertions that have been fully verified, that is, where

the supposition is the literal true. (Note that we consider
the supposition to be the literal true when true is a disjunct
of the supposition.)
For simplicity, we present the abstraction for a concrete

programming language with the statements: assumed state-
ments, assertions, method calls, conditionals, loops, and as-
signments. Besides conditional statements and loops with
non-deterministic guards, the abstract language provides the
following statements:
− initialization of assumption identifiers: var a := true,
− updates to assumption identifiers: a := a && *, where *

denotes a non-deterministic (boolean) value,
− assertions: assert * verified A, where A 6≡ true, and
− method calls: call Mf , where Mf is a fully-qualified

method name and the receiver and arguments have been
abstracted away.

Note that we desugar assumed statements into initializa-
tions and updates of assumption identifiers, which allows
us to treat modular and whole-program analyses uniformly
even though they require a different encoding of assumed
statements (Sect. 2.1).
To abstract a program, we recursively apply the following

transformations to its statements. These transformations
can be considered as an application of predicate abstrac-
tion [29], which uses the assumption identifiers as predicates
and does not rely on a theorem prover to derive the boolean
program:
− an assumption assumed P as a is rewritten to an as-

sumption identifier initialization var a := true (at the
appropriate program point, as discussed above) and an
update a := a && *,

− an assertion assert P verified A is transformed into
assert * verified A, if A is not the literal true (and
omitted otherwise),

− a method call r.M(...) is rewritten to call Mf , where
Mf is the fully-qualified name of M ,

− a conditional statement if (b) S0 else S1 is rewritten
to if (*) S′

0 else S′
1, where S′

0 and S′
1 are the results

of recursively rewriting the statements S0 and S1, respec-
tively,

− a loop while (b) S is rewritten to while (*) S′, where
S′ is the result of recursively rewriting statement S, and

− assignments are omitted.
Fig. 3 shows the abstraction of method Deposit from

Fig. 2. The gray boxes (light and dark) show the inferred
may-unverified conditions, as we explain next.

3.2 May-unverified conditions
A may-unverified condition expresses that some execution

from the current program point onward may be unverified.
We compute this condition for each program point in two
steps. First, we compute the weakest condition at the cor-
responding program point in the abstract program that im-
plies that all executions are verified. Since the set of execu-
tions of the abstract program subsumes the set of concrete
executions, this condition also implies that all concrete ex-
ecutions are verified (although for the concrete execution,
the computed condition is not necessarily the weakest such
condition). Second, we negate the computed condition to
obtain a may-unverified condition.

Inference.
To compute the weakest condition that implies that all
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1 method Deposit () {
2 {true}
3 var a := true;
4 {true}
5 if (*) {
6 {!a}
7 call Account . ReviewDeposit ;
8 {!a}
9 } else {

10 {true}
11 a := a && *;
12 {!a}
13 if (*) {
14 {!a}
15 call Account . SuggestInvestment ;
16 {!a}
17 }
18 {!a}
19 }
20 {!a}
21 assert * verified a;
22 {false}
23 }

Figure 3: The abstraction of method Deposit from
Fig. 2. The gray boxes (light and dark) show the
inferred may-unverified conditions. The conditions
that are used for the may-unverified instrumenta-
tion are shown in dark gray boxes.

executions from a program point onward are verified, we
define a predicate transformer WP on abstract programs.
If WP(S, R) holds in a state, then the supposition of each
assertion in each execution of statement S from that state
holds and, if the execution terminates, R holds in the final
state. Since we focus on modular verification techniques in
this paper, we assume here that calls are encoded via their
pre- and postcondition [34] and, thus, do not occur in the
abstract program. Defining an inter-procedural WP is of
course also possible. Thus, we define WP as follows:
− WP(assert * verified A, R) ≡ A ∧R,
− WP(a := true, R) ≡ R[a := true], where R[a := true]

denotes the substitution of a by true in R, and
− WP(a := a && *, R) ≡ ∀b :: R[a := b], where b is a

fresh boolean variable. The quantifier in this predicate
can be replaced by the conjunction of the two possible
instantiations.

The semantics of sequential composition, conditionals, and
loops is standard [20]. In our implementation, we use back-
ward abstract interpretation to compute the weakest precon-
dition for each program point in terms of a set of cubes (that
is, conjunctions of assumption identifiers or their negations).
In the presence of loops or recursion, we use a fixed-point
computation.
For every program point of the abstract program, the

may-unverified condition is the negation of the weakest pre-
condition at that program point

May(S) ≡ ¬WP(S, true)

where S denotes the code fragment after the program point.
The gray boxes in Fig. 3 show the may-unverified con-

ditions at each program point (assuming ReviewDeposit
and SuggestInvestment have no preconditions). In the ex-
ample, the may-unverified inference propagates meaning-
ful information only up until the non-deterministic update
is reached, which corresponds to the assumed statement.
Specifically, on line 10, we infer true because the abstrac-
tion loses the information that would be needed to compute
a stronger may-unverified condition. So, in return for an
efficient condition inference, we miss some opportunities for
aborting and pruning redundant tests.

Instrumentation.
Since each execution of the concrete program corresponds

to an execution of the abstract program, we can instrument
the concrete program by adding an assume C statement at
each program point, where C is the may-unverified condition
at the corresponding program point in the abstract program.
As we explained in Sect. 2.2, these statements will abort
redundant test cases and contribute constraints that guide
DSE toward unverified executions.
To avoid redundant constraints that would slow down

DSE, we omit assume statements when the may-unverified
condition is trivially true or not different from the condition
at the previous program point, as well as the assume false
statement at the end of the unit under test. Therefore, out
of all the conditions inferred for the example in Fig. 3, we
use only the ones on lines 6 and 12 to instrument the pro-
gram, which leads to the assumptions on lines 4 and 9 of
Fig. 2 and guides DSE as described in Sect. 2.2.

3.3 Must-unverified conditions
A must-unverified condition expresses that (1) each ex-

ecution from the program point onward contains at least
one assertion and (2) on each execution, the supposition of
each assertion evaluates to false. We can compute must-
unverified conditions on the abstract program because the
conditions for the abstract program provide guarantees for
each abstract execution, and each concrete execution corre-
sponds to an abstract execution.

Inference.
We infer the two properties that are entailed by a must-

unverified condition separately via two predicate transform-
ers Mustassert and Mustall. If Mustassert(S, R) holds in
a state, then each execution of statement S from that state
encounters at least one assertion or terminates in a state in
which R holds. If Mustall(S, R) holds in a state, then the
supposition of each assertion in each execution of statement
S from that state does not hold and, if S terminates, R
holds. Both transformers yield the weakest condition that
has these properties. Consequently, we obtain the weak-
est must-unverified condition for an abstract statement S as
follows:

Must(S) ≡Mustassert(S, false) ∧Mustall(S, true)

Mustassert and Mustall are defined analogously to WP
(see Sect. 3.2), except for the treatment of assertions:

Mustassert(assert * verified A, R) ≡ true

Mustall(assert * verified A, R) ≡ ¬A ∧R
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1 method Deposit () {
2 {false}
3 var a := true;
4 {!a}
5 if (*) {
6 {!a}
7 call Account . ReviewDeposit ;
8 {!a}
9 } else {

10 {!a}
11 a := a && *;
12 {!a}
13 if (*) {
14 {!a}
15 call Account . SuggestInvestment ;
16 {!a}
17 }
18 {!a}
19 }
20 {!a}
21 assert * verified a;
22 {true}
23 assert * verified false ;
24 {false}
25 }

Figure 4: The abstraction of a variant of method
Deposit from Fig. 2 that contains an additional un-
verified assertion at the end of the method (see
Sect. 2.2). The gray boxes show the inferred must-
unverified conditions. The conditions that are used
for the must-unverified instrumentation are shown
in dark gray boxes.

The definition for Mustassert expresses that, at a program
point before an assertion, property (1) holds, that is, the
remaining execution (from that point on) contains at least
one assertion. The definition for Mustall expresses that the
supposition A must evaluate to false, and that R must hold
to ensure that the suppositions of subsequent assertions do
not hold either.
Fig. 4 shows the abstraction of a variant of Deposit from

Fig. 2 that contains an additional unverified assertion at
the end of the method (see Sect. 2.2). The gray boxes
show the inferred must-unverified conditions, as we explain
next. Compared to the may-unverified conditions, the must-
unverified conditions are stronger, that is, information is
usually propagated further up in the control flow. Whereas
the unverified assertion at the end of this example causes
the may-unverified conditions to be trivially true, the must-
unverified inference obtains conditions that can be used to
prioritize test cases.

Instrumentation.
To prioritize tests that satisfy their must-unverified condi-

tions, we instrument the concrete program with tryfirst C
statements, where C is the must-unverified condition at the
corresponding program point in the abstract program. This
statement causes DSE to prefer test inputs that satisfy con-

dition C. More specifically, when a tryfirst C statement is
executed for the first time, it adds C to the path condition to
force DSE to generate inputs that satisfy condition C. Note
however, that unlike the constraints added by assume state-
ments, this constraint may be dropped by the DSE to also
explore executions where the condition is violated. If during
this first execution of the statement condition C is violated,
then the test case is interrupted and will be re-generated
later when condition C can no longer be satisfied. So the
tryfirst statement influences the order in which test cases
are generated, but never aborts or prunes tests. Neverthe-
less, the order is important because DSE is typically applied
until certain limits (for instance, on the overall testing time
or the number of test cases) are reached. Therefore, explor-
ing non-redundant test cases early increases effectiveness.
To avoid wasting time on interrupting tests that will be

re-generated later, our implementation enforces an upper
bound on the number of interrupts that are allowed per
unit under test. When this upper bound is exceeded, all
remaining tryfirst statements have no effect.
As illustrated by lines 4, 6, 8, and 10 in Fig. 4, the must-

unverified condition at some program points evaluates to
false for all executions. Instrumenting these program points
would lead to useless interruption and re-generation of test
cases. To detect such cases, we apply constant propagation
and do not instrument program points for which the must-
unverified conditions are trivially true or false. Moreover,
we also omit the instrumentation for conditions that are
not different from the condition at the previous program
point. Therefore, out of all the conditions inferred for the
example in Fig. 4, we use only the ones on lines 12 and 20
to instrument the program, which prioritize test cases that
lead to an arithmetic overflow on line 10, as discussed in
Sect. 2.2.

3.4 Combined instrumentation
As we explained in Sect. 2.2, the may-unverified instru-

mentation aborts and prunes redundant tests, while the
must-unverified instrumentation prioritizes test cases that
are more likely to detect an assertion violation. One can,
therefore, combine both instrumentations such that DSE
(1) attempts to first explore program executions that must
be unverified, and (2) falls back on executions that may be
unverified when the former is no longer feasible.
The combined instrumentation includes both the assume

statements from the may-unverified instrumentation and the
tryfirst statements from the must-unverified instrumenta-
tion. The tryfirst statement comes first. Whenever we
can determine that the must-unverified and may-unverified
conditions at a particular program point are equivalent, we
omit the tryfirst statement, because any interrupted and
re-generated test case would be aborted by the subsequent
assume statement anyway.

4. EXPERIMENTS
In this section, we give an overview of our implementa-

tion and present our experimental results. In particular,
we show that, compared to dynamic symbolic execution
alone, our technique produces smaller test suites, covers
more unverified executions, and reduces testing time. We
also show which of our instrumentations—may-unverified,
must-unverified, or their combination—is the most effective.
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4.1 Implementation
We have implemented our technique for the .NET static

analyzer Clousot [23] and the dynamic symbolic execution
tool Pex [39]. Our tool chain consists of four subsequent
stages: (1) static analysis and verification-annotation instru-
mentation, (2) may-unverified and must-unverified instru-
mentation, (3) runtime checking, and (4) dynamic symbolic
execution.
The first stage runs Clousot on a given .NET program,

which contains code and optionally specifications expressed
in Code Contracts [22], and instruments the sources of un-
soundness and verification results of the analyzer using our
verification annotations. For this purpose, we have imple-
mented a wrapper around Clousot, which we call Inspector-
Clousot, that uses the debug output emitted during the
static analysis to instrument the program (at the binary
level). Note that Clousot performs a modular analysis, and
thus, the verification annotations are local to the containing
methods.
The second stage of the tool chain adds the may-unverified,

must-unverified instrumentation, or their combination to the
annotated program.
In the third stage, we run the existing Code Contracts

binary rewriter to transform any Code Contracts specifica-
tions into runtime checks. We then run a second rewriter,
which we call Runtime-Checking-Rewriter, that transforms
all the assumed statements and assertions of the annotated
program into assignments and assumptions, as described in
Sect. 2.1.
In the final stage, we run Pex on the instrumented code.

4.2 Experimental evaluation
In the rest of this section, we describe the setup for the

evaluation of our technique and present experiments that
evaluate its benefits.

Setup.
For our experiments, we used 101 methods from nine

open-source C# projects and from solutions to 13 program-
ming tasks on the Rosetta Code repository. We selected only
methods for which Pex can automatically produce more than
one test case (that is, Pex does not require user-provided
factories) and at least one successful test case (that is, Pex
generates non-trivial inputs that, for instance, pass input
validation that might be performed by the method).
In Clousot, we enabled all checks, set the warning level to

the maximum, and disabled all inference options. In Pex,
we set the maximum number of branches, conditions, and
execution tree nodes to 100,000, and the maximum number
of concrete runs to 30.
In our experiments, we allowed up to 4 test interrupts

per method under test when these are caused by tryfirst
statements (see Sect. 3.3). We experimented with different
such bounds (1, 2, 4, and 8) on 25 methods from the suite
of 101 methods. We found that, for an upper bound of 4
for the number of allowed interrupts per method, dynamic
symbolic execution strikes a good balance between testing
time and the number of detected bugs.

Performance of static analysis and instrumentation.
On average, Clousot analyzes each method from our suite

in 1.9 seconds. The may-unverified and must-unverified in-
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Figure 5: The tests generated by each configuration,
categorized as non-redundant and failing, or non-
redundant and successful, or redundant tests.

strumentations are very efficient. On average, they need 22
milliseconds per method when combined.

Configurations.
To evaluate our technique, we use the following configu-

rations:
− UV : unverified code.

Stages 1 and 2 of the tool chain are not run.
− PV : partially-verified code.

Stage 2 of the tool chain is not run.
− MAY : partially-verified code, instrumented with may-

unverified conditions.
All stages of the tool chain are run. Stage 2 adds only
the may-unverified instrumentation.

− MUST : partially-verified code, instrumented with must-
unverified conditions.
All stages of the tool chain are run. Stage 2 adds only
the must-unverified instrumentation.

− MAY×MUST : partially-verified code, instrumented with
may-unverified and must-unverified conditions.
All stages of the tool chain are run. Stage 2 adds the
combined may-unverified and must-unverified instrumen-
tation.
For our experiments, we use configuration PV as the base-

line to highlight the benefits of the main contributions of this
paper, that is, of the may-unverified and must-unverified in-
ference. However, note that the results of dynamic symbolic
execution alone, that is, of UV , do not significantly differ
from those of PV in terms of the total number of tests and
the number of non-redundant tests generated for the 101
methods.
This is illustrated by Fig. 5, which shows the tests that

each configuration generated for the 101 methods, catego-
rized as non-redundant and failing, or non-redundant and
successful, or redundant tests. To determine the redundant
tests generated by configurations UV , PV , and MUST , we
ran all tests generated by these configurations against the
101 methods, after having instrumented the methods with
the may-unverified conditions. We then counted how many
of these tests were aborted. Note that the figure does not
include tests that are interrupted because a condition in
a tryfirst statement is violated (since these tests are re-
generated—and counted—later). Furthermore, tests that
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101 methods by configurations PV and MAY .
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Figure 7: Number of non-redundant tests generated
for the 101 methods by configurations PV and MAY .

terminate on exceptions that are explicitly thrown by the
method under test, for instance, for parameter validation,
are not considered failing.

Smaller test suites.
The may-unverified instrumentation causes DSE to abort

tests leading to verified executions. By aborting these tests,
our technique prunes the verified parts of the search space
that would be explored only if these tests were not aborted.
As a result, DSE generates smaller test suites.
This is shown in Fig. 6. In comparison to PV , the total

number of tests generated for the 101 methods by MAY is
significantly smaller. Note that Fig. 6 includes all generated
tests, even those that are aborted. However, for certain
methods, configuration MAY generates more tests than PV .
This is the case when pruning verified parts of the search
space guides dynamic symbolic execution toward executions
that happen to be easier to cover within the exploration
bounds of Pex (for instance, maximum number of branches
or constraint solver timeouts).
Fig. 5 shows that, in total, MAY generates 19.2% fewer

tests and MAY ×MUST generates 16.1% fewer tests than
PV . The differences in the total number of tests for con-
figurations without the may-unverified instrumentation are
minor.

More unverified executions.
Even though configuration MAY generates smaller test

suites in comparison to PV , it does not generate fewer non-
redundant tests, as shown in Fig. 7. In other words, MAY
generates at least as many non-redundant tests as PV , thus
covering at least as many unverified executions. Fig. 5 shows
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Figure 8: Number of non-redundant tests gener-
ated for the 101 methods by configurations MAY
and MUST .

that MAY generates two additional non-redundant tests in
comparison to PV .
The must-unverified instrumentation causes dynamic sym-

bolic execution to prioritize test inputs that lead to unveri-
fied executions. In comparison to the may-unverified condi-
tions, the must-unverified conditions are stronger and their
instrumentation is usually added further up in the control
flow. As a result, this instrumentation can guide dynamic
symbolic execution to cover unverified executions earlier and
may allow it to generate more tests for such executions
within the exploration bounds of Pex. This is shown in
Fig. 8. Fig. 5 shows that configuration MUST generates
5.6% more non-redundant tests than MAY and 6.3% more
than PV . By generating more such tests, we increase the
chances of producing more failing tests. In fact, MUST
generates 4.1% more failing tests than MAY and 4.8% more
than PV .

MUST typically generates more non-redundant tests for
methods in which Clousot detects errors, that is, for meth-
ods with unverified assertions. In such methods, the may-
unverified instrumentation is added only after the unveri-
fied assertions in the control flow (if the conditions are non-
trivial), thus failing to guide dynamic symbolic execution to-
ward unverified executions early on, as discussed in Sect. 2.2.

Shorter testing time.
We now compare the testing time of the different config-

urations. For this experiment, we considered only methods
for which all configurations generated the same number of
non-redundant tests. This is to ensure a fair comparison;
for these methods, all configurations achieved the same cov-
erage of unverified executions. This experiment involved
72 out of the 101 methods, and the time it took for each
configuration to test these methods is shown in Fig. 9. As
expected, pruning verified parts of the search space with the
may-unverified instrumentation is very effective. In partic-
ular, configuration MAY is 51.7% faster and configuration
MAY ×MUST is 52.4% faster than PV . Note that Fig. 9
does not include the time of the static analysis for two rea-
sons. First, Clousot is just one way of obtaining verification
results. Second, the goal of our work is to efficiently com-
plement verification results with test case generation; so ob-
taining the verification results is a separate step. Recall
that the overhead of the instrumentation is negligible. The
differences in performance between the configurations with-
out the may-unverified instrumentation are significantly less
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Figure 10: The exploration bounds reached by each
configuration, grouped into max-branches, max-
stack, max-runs, and max-solver-time.

pronounced.
Even though MAY is overall much faster than PV , there

were methods for which the testing time for MAY was longer
in comparison to PV . This is the case when constraint solv-
ing becomes more difficult due to the inferred conditions. In
particular, it might take longer for the constraint solver to
prove that an inferred condition at a certain program point
does not hold.

Fewer exploration bounds reached.
During its exploration, dynamic symbolic execution may

reach bounds that prevent it from covering certain, possi-
bly failing, execution paths. Fig. 10 shows the exploration
bounds in Pex that were reached by each configuration when
testing all 101 methods. There are four kinds of reached
bounds:
− max-branches: maximum number of branches that may

be taken along a single execution path;
− max-stack: maximum size of the stack, in number of ac-

tive call frames, at any time during a single execution
path;

− max-runs: maximum number of runs that will be tried
during an exploration (each run uses different inputs but
not every run results in the generation of a new test case);

− max-solver-time: maximum number of seconds that the
constraint solver has to find inputs that will cause a dif-
ferent execution path to be taken.
As shown in the figure, configurations MAY , MUST , and

MAY ×MUST reach the max-solver-time bound more of-

ten than PV . This is because our instrumentation intro-
duces additional conjuncts in the path conditions, occasion-
ally making constraint solving harder. Nevertheless, config-
urations MAY and MAY×MUST overall reach significantly
fewer bounds than PV (for instance, the max-stack bound is
never reached) by pruning verified parts of the search space.
This helps in alleviating an inherent limitation of symbolic
execution by building on results from tools that do not suffer
from the same limitation.

Winner configuration.
As shown in Fig. 5, configuration MAY×MUST generates

the second smallest test suite containing the largest number
of non-redundant tests and the smallest number of redun-
dant tests. This is achieved in the shortest amount of testing
time for methods with the same coverage of unverified ex-
ecutions across all configurations (Fig. 9) and by reaching
the smallest number of exploration bounds (Fig. 10).
Therefore, MAY ×MUST effectively combines the bene-

fits of both the may-unverified and must-unverified instru-
mentation to prune parts of the search space that lead only
to verified executions as well as to identify and prefer test
inputs that lead to unverified executions as soon as possible.

Soundness bugs in Clousot.
During our experiments, we realized that our verifica-

tion annotations can also be used to systematically test for
soundness issues in static analyzers [18]. This is achieved as
follows. Given a piece of code, imagine that configuration
UV generates a number of failing tests. Now, we instrument
the code with the known unsound assumptions made by a
static analyzer and its verification results (stage 1 of the tool
chain). We detect a soundness issue if, when running the
failing tests against the instrumented code, at least one fail-
ing test runs through an assertion assert P verified A
where A 6⇒ P . A soundness issue could either be caused
by accidental unsoundness (that is, bugs in the implemen-
tation of the analyzer) or by bugs in Inspector-Clousot (for
instance, missing a source of deliberate unsoundness).
In this way, we found the following three bugs in the im-

plementation of Clousot: (1) unsigned integral types are not
always treated correctly, (2) the size of each dimension in a
multi-dimensional array is not checked to be non-negative
upon construction of the array, and (3) arithmetic overflow
is ignored in modulo operations (for instance, MinValue %
-1). We reported these three bugs to the main developer
of Clousot, Francesco Logozzo, who confirmed all of them.
The latter two bugs have already been fixed in the latest
version of the tool2.

Threats to validity.
We identified the following threats to the validity of our

experiments:
− Sample size: For our experiments, we used 101 methods

from nine C# projects and from solutions to 13 program-
ming tasks. We believe that this sample is representative
of a large class of C# methods.

− Static analyzer : For our experiments, we used a modular
(as opposed to whole-program) static analyzer, namely,

2 https://github.com/Microsoft/CodeContracts
(revs: 803e34e72061b305c1cde37a886c682129f1ddeb
and 1a3c0fce9f8c761c3c9bb8346291969ed4285cf6)
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Clousot. Moreover, our experimental results depend on
the deliberate sources of unsoundness and verification re-
sults of this particular analyzer. Note that there are a
few sources of unsoundness in Clousot that our tool chain
does not capture [12], for instance, about reflection or un-
managed code.

− Soundly-analyzed methods: 23 out of the 101 methods
contain no assumed statements. In case Clousot reports
no warning, these methods are fully verified and need not
be tested. Other code bases could have a smaller fraction
of fully-verified methods, leading to less effective pruning.

− Failing tests: The failing tests generated by each config-
uration do not necessarily reveal bugs in the containing
methods. This is inherent to unit testing since methods
are tested in isolation rather than in the context of the
entire program. However, 50 out of the 101 methods val-
idate their parameters (and for 10 methods no parameter
validation was necessary), which suggests that program-
mers did intend to prevent failures in these methods.

5. RELATED WORK
Many static analyzers that target mainstream program-

ming languages deliberately make unjustified assumptions
in order to increase automation, improve performance, and
reduce the number of false positives and the annotation over-
head for the programmer. Examples of such analyzers are
HAVOC [3], Spec# [6], and ESC/Java [24]. Our technique
can effectively complement these analyzers by dynamic sym-
bolic execution.

Integration of static analysis and testing.
Various approaches combine static analysis and testing

mainly to determine whether an error reported by the static
analysis is spurious. Check ’n’ Crash [16] is an automated
defect detection tool that integrates the ESC/Java static
checker with the JCrasher [15] testing tool in order to de-
cide whether errors emitted by the static checker are real
bugs. Check ’n’ Crash was later integrated with Daikon [21]
in the DSD-Crasher tool [17]. DyTa [25] integrates Clousot
with Pex to reduce the number of spurious errors compared
to static analysis alone, and to perform more efficiently com-
pared to dynamic test generation alone. This is achieved by
guiding dynamic symbolic execution toward the errors that
Clousot reports. In contrast to our approach, DyTa does
not take into account the unjustified assumptions made by
Clousot [12]. Consequently, bugs might be missed since ex-
ecution paths are pruned only based on the reported errors.
YOGI [37] switches between static analysis and dynamic

symbolic execution to find bugs, similarly to counterexample-
guided abstraction refinement (CEGAR) [13]. Unlike our
technique, YOGI relies on a sound static analysis. The
SANTE tool [10] also uses a sound value analysis (in combi-
nation with program slicing) to prune those execution paths
that do not lead to unverified assertions.
A recent approach [19] starts by running a conditional

model checker [7] on a program, and then tests those parts
of the state space that were not covered by the model checker
(for instance, due to timeouts). More specifically, the model
checker produces an output condition, which captures the
safe states and is used to produce a residual program that
can be subsequently tested. Unlike an instrumented pro-
gram in our technique, the residual program can be struc-
turally very different from the original program. As a result,

its construction can take a significant amount of time, as
the authors point out. Furthermore, this approach can only
characterize assertions as either fully verified or unverified
on a given execution path. It is not clear how to apply this
approach in a setting with static analysis tools that are not
fully sound [36, 12] without reducing its effectiveness.

Dynamic symbolic execution.
Testing and symbolically executing all feasible program

paths is not possible in practice. The number of feasible
paths can be exponential in the program size, or even infinite
in the presence of input-dependent loops.
Existing testing tools based on dynamic symbolic exe-

cution alleviate path explosion using search strategies and
heuristics, which guide the search toward least-covered parts
of the program while pruning the search space. These strate-
gies typically optimize properties such as “deeper paths” (in
depth-first search), “less-traveled paths” [35], or “number
of new instructions covered” (in breadth-first search). For
instance, SAGE [28] uses a generational-search strategy in
combination with simple heuristics, such as flip count lim-
its and constraint subsumption. Other industrial-strength
tools, like Pex, also use similar techniques. Our technique
resembles a search strategy in that it optimizes unverified
executions, prunes verified executions, and is guided by ver-
ification annotations, instead of properties like the above.
Compositional symbolic execution [26, 1] has been shown

to alleviate path explosion. Dynamic state merging [32]
and veritesting [2] alleviate path explosion by merging sub-
program searches, while RWset [8] prunes searches by dy-
namically computing variable liveness. By guiding dynamic
symbolic execution toward unverified program executions,
our technique also alleviates path explosion. In particular,
the may-unverified instrumentation causes dynamic sym-
bolic execution to abort tests that lead to verified execu-
tions. When aborting these tests, our technique prunes the
parts of the search space that would be discovered only if
these tests were not aborted. Besides, we could combine our
technique with some of these approaches.

6. CONCLUSION
We have presented a technique for complementing partial

verification results by automatic test case generation. Our
technique causes dynamic symbolic execution to abort tests
that lead to verified executions, consequently pruning parts
of the search space, and to prioritize tests that lead to un-
verified executions. It is applicable to any program with
verification annotations, either generated automatically by
a static analysis or inserted manually, for instance, during
a code review. Our work suggests a novel way to combine
static analysis and testing in order to maximize software
quality, and investigates to what extent static analysis re-
duces the test effort.
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