
Fuzzing Processing Pipelines for Zero-Knowledge Circuits
Christoph Hochrainer

TU Wien
Vienna, Austria

christoph.hochrainer@tuwien.ac.at

Anastasia Isychev
TU Wien

Vienna, Austria
anastasia.isychev@tuwien.ac.at

Valentin Wüstholz
Consensys

Vienna, Austria
valentin.wustholz@consensys.net

Maria Christakis
TU Wien

Vienna, Austria
maria.christakis@tuwien.ac.at

Abstract

Zero-knowledge (ZK) protocols have recently found numerous
practical applications, such as in authentication, online-voting, and
blockchain systems. These protocols are powered by highly com-
plex pipelines that process deterministic programs, called circuits,
written in one of many domain-specific programming languages,
e.g., Circom, Noir, and others. Logic bugs in circuit-processing
pipelines could have catastrophic consequences and cause signifi-
cant financial and reputational damage. As an example, consider
that a logic bug in a ZK pipeline could result in attackers steal-
ing identities or assets. It is, therefore, critical to develop effective
techniques for checking their correctness.

In this paper, we present the first systematic fuzzing technique
for ZK pipelines, which uses metamorphic test oracles to detect
critical logic bugs. We have implemented our technique in a tool
called Circuzz. We used Circuzz to test four significantly different
ZK pipelines and found a total of 16 logic bugs in all pipelines. Due
to their critical nature, 15 of our bugs have already been fixed by
the pipeline developers.
ACM Reference Format:

Christoph Hochrainer, Anastasia Isychev, Valentin Wüstholz, and Maria
Christakis. 20XX. Fuzzing Processing Pipelines for Zero-Knowledge Circuits.
In Proceedings of XYZ (XYZ ’XX). ACM, New York, NY, USA, 15 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction

Zero-knowledge (ZK) protocols have recently evolved to enable a
wide range of practical scenarios and applications [17], including
authentication, online voting, and blockchain systems. These pro-
tocols are called “zero knowledge” because they allow one party,
the prover, to prove to another party, the verifier, that they know a
secret without revealing it. More specifically, consider a determin-
istic program 𝐶 , called a circuit, that performs a computation over
public and private (or secret) inputs, 𝐼𝑃 and 𝐼𝑆 respectively. Given
𝐶 , the prover must show to the verifier that the computed output𝑂

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
XYZ ’XX, June 03–05, 20XX, Woodstock, NY

© 20XX Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

is indeed produced by executing𝐶 with 𝐼𝑃 and 𝐼𝑆 , without however
revealing 𝐼𝑆 .

Under the hood, the typical workflow of a ZK pipeline, shown in
Fig. 1, is as follows. A circuit 𝐶 is specified in one of many domain-
specific programming languages, such as Circom [7], Noir [3],
Corset [1], and others. The compiler of the ZK pipeline produces a
constraint system as well as awitness generator. (Note that, for some
pipelines, the witness generator already exists and is not generated
by the compiler.) Given inputs 𝐼𝑃 and 𝐼𝑆 , the witness generator
produces a witness, which is essentially an assignment satisfying
the constraint system. On a high level, the witness may also be
understood as a trace through 𝐶 . The witness is used by the prover
of the pipeline to generate a proof, which, together with 𝐼𝑃 , can be
passed to the verifier of the pipeline to verify its correctness.

Hence, unlike for regular programs, the pipelines for processing
circuits comprise components for witness and proof generation
as well as for proof verification. They are, therefore, highly com-
plex, and given their growing applicability, correctness of these
pipelines is highly critical [13]. More concretely, consider that the
Gnark [2] and Corset ZK pipelines are core components of the
Linea blockchain, which stores crypto-assets worth ca. 745M USD
as of January 2025. Bugs in these pipelines could have catastrophic
consequences, potentially causing significant financial and rep-
utational damage. For this reason, pipeline developers typically
follow very strict development processes. In the case of Gnark [2],
both internal and external security teams perform regular audits;
8 external audits alone have been performed in the last two years
(2022–24).

Still, bugs in ZK pipelines are extremely hard to detect just like
for regular compilers and execution environments. There is, thus,
a pressing need to develop automated and effective techniques for
validating their correctness. Verifying the absence of bugs in their
implementations is overly demanding. Consider, for instance, the
verification efforts for CompCert [29], a compiler for a subset of
C—it is about 15K lines of code and required 6 person years to write
100K lines of specifications. So, for the much more complex ZK
pipelines, such an endeavor is practically infeasible.

Our approach. Unlike verification, automated test-generation
techniques have been previously used to detect bugs in real-world
compilers (see [14] for an overview) and program analyzers (e.g.,
[20, 22, 24, 31, 35, 44, 45]) without providing absolute correctness
guarantees, that is, without promising that all bugs are found. In
this paper, we present the first fuzzing technique for finding critical

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

XYZ ’XX, June 03–05, 20XX, Woodstock, NY Christoph Hochrainer, Anastasia Isychev, Valentin Wüstholz, and Maria Christakis

Compiler
Witness

Generator

Witness Prover Proof Verifier

Circuit

𝐶

Inputs

𝐼𝑆 𝐼𝑃
✓

Figure 1: Overview of zero-knowledge pipeline stages.

logic bugs in circuit-processing pipelines and its implementation in a
fuzzer called Circuzz.

To check the expected behavior of circuit-processing pipelines
and effectively detect such bugs, automated testing techniques
must solve the so-called oracle problem [6]. For example, differ-
ential testing [32] could address the oracle problem by running
several pipelines on the same inputs and comparing their outputs
for differences. More specifically, the inputs are circuits, and the
outputs are the outputs of the various pipeline stages, e.g., compila-
tion, witness generation, etc. In our context however, it would be
difficult to ensure that the input circuits are semantically equivalent
across diverse domain-specific languages with different levels of
expressiveness.

Our approach, therefore, addresses the oracle problem using an
alternative technique, calledmetamorphic testing [15]. Metamorphic
testing [15] typically checks the correctness of a program 𝑃 by
running the program on an input 𝑖1, observing the output 𝑜1, and
transforming 𝑖1 to obtain 𝑖2. This transformation is such that we
know what output 𝑜2 to anticipate (in practice, often the same as
for 𝑖1), thereby providing an oracle for the correct behavior of 𝑃 .
When actually running 𝑃 on 𝑖2, if 𝑜2 contradicts the anticipated
output, the oracle is violated and a bug in the program has been
found. In our context, inputs 𝑖1 and 𝑖2 are circuits, the program is a
ZK pipeline, and the outputs are the outputs of the various pipeline
stages.

On a high level, Circuzz generates a configurable number of
random circuits in an intermediate language, which we designed to
capture essential features of many existing ZK languages, such as
Circom or Noir. Next, Circuzz applies a sequence of metamorphic
transformations to each generated circuit, say 𝐶1, to obtain circuit
𝐶2. After creating transformed circuit𝐶2, e.g., by swapping the argu-
ments of a commutative operator in 𝐶1, Circuzz translates 𝐶1 and
𝐶2 from the intermediate language to a specific ZK language. It then
tests the entire processing pipeline, that is, including compilation,
witness generation, proof generation, and proof verification.

To obtain (public and private) inputs 𝐼𝑃 and 𝐼𝑆 for the circuits,
Circuzz generates them randomly. Hence, when executing the
pipeline for each circuit using the same inputs, if any pipeline stage
generates an unexpected output, a bug has been detected. For the

example of swapping the arguments of a commutative operator, we
would not expect any stage outputs to diverge.

Our approach constitutes the first application of metamorphic
testing for circuit-processing pipelines. In addition, we observe that
these pipelines are slower than most other fuzzing targets that have
been tested using techniques such as metamorphic testing, e.g.,
parsers, compilers, or program analyzers. We, therefore, develop
several optimizations to increase the unusually low test throughput
when testing ZK pipelines.

In general, the bugs that Circuzz aims to detect are logic bugs.
For ZK pipelines, such logic bugs can expose two types of critical is-
sues, namely soundness and completeness issues. A soundness issue
typically manifests through a lack of input validation in one of the
pipeline stages; for instance, by finding a circuit and a circuit input
for which the pipeline produces a witness or proof when, instead,
the circuit input should be rejected. In contrast, a completeness
issue typically manifests through overly strong input validation
in one of the pipeline stages; for instance, by finding a circuit and
a circuit input for which the pipeline does not produce a witness
or proof when it should. These two types of issues can be seen as
duals. However, note that certain logic bugs may compromise both
soundness and completeness at the same time.

Our fuzzing technique primarily works on our intermediate lan-
guage instead of specific ZK languages. Note that ZK languages
can be quite different, e.g., Noir is Rust-based whereas Corset is
Lisp-based. The generality that comes with the intermediate lan-
guage allows us to easily extend Circuzz to test new ZK pipelines
by adding the corresponding circuit-generation backends, which
translate circuits from the intermediate to the target ZK language.
In fact, we used Circuzz to test four significantly different ZK
pipelines, namely Circom [7], Corset [1], Gnark [2], and Noir [3].
As we discuss in our experimental evaluation, Circuzz detected 16
logic bugs in these four ZK pipelines, 15 of which are already fixed
by the developers. Three of the detected bugs compromised sound-
ness, seven compromised completeness, and six compromised both
soundness and completeness. Note that we responsibly disclosed
all issues to the development teams by either privately reporting
them or receiving their permission to publicly do so.

Contributions. Overall, our paper makes the following contribu-
tions:

Fuzzing Processing Pipelines for Zero-Knowledge Circuits XYZ ’XX, June 03–05, 20XX, Woodstock, NY

• We present the first systematic fuzzing technique for circuit-
processing pipelines; it uses metamorphic test oracles to find
critical logic bugs.

• We implement our technique in the publicly available tool
Circuzz1.

• We evaluate Circuzz by testing four different ZK pipelines,
namely Circom, Corset, Gnark, and Noir; Circuzz was
able to detect logic bugs in all pipelines.

Outline. The rest of the paper is organized as follows. In Sect. 2,
we give an overview of Circuzz, and in Sect. 3, we describe the
technical details of our technique. Sect. 4 presents our experimental
evaluation. We review related work in Sect. 5 and conclude in
Sect. 6.

2 Overview

In this paper, we propose the first systematic technique for
fuzzing circuit-processing pipelines. An overview of our technique
is shown in Fig. 2. On a high level, it consists of the following
steps: (1) circuit generation (in our intermediate language), (2) cir-
cuit transformation, (3) circuit translation (to the target language),
(4) input generation, and (5) bug detection. In the rest of this section,
we walk the reader through each of these steps based on an actual
logic bug that Circuzz found in Circom. In Sect. 3, we describe
each of these steps in detail.

Fig. 3a shows a circuit, say 𝐶1, generated by step (1) of our
technique. The circuit is expressed in our intermediate language,
which we callCircIL; lines 1–2 declare the inputs and outputs, line 3
computes output out0, and line 4 introduces the constraint that
in0 != in1. The output is assigned a constant expression, namely
the bitwise complement of 𝑝 . Here, 𝑝 is a 254-bit prime number
and the base field of the BN254 curve (also known as alt-BN128), a
common prime elliptic curve used in cryptography. (We omit the
value of the prime number in the code due to its size.)

Fig. 3b shows circuit 𝐶2, again in our intermediate language,
which is generated by step (2) of our technique, i.e., it is obtained by
applying metamorphic transformations on 𝐶1. In particular, we ap-
ply three equivalence transformations—that is, ones that do not alter
the semantics of𝐶1—on line 3: a multiplication with the identity ele-
ment (1 * 𝑝), a subtraction of the identity element ((1 - 0) * 𝑝),
and a division by the identity element (((1 - 0) / 1) * 𝑝).

Step (3) translates 𝐶1 and 𝐶2 into the target language, in this
case Circom. The resulting circuits are shown in Fig. 3c and 3d,
respectively. Next, step (4) randomly generates input values for sig-
nals in0 and in1. Finally, step (5) tests the entire Circom pipeline
on 𝐶1 and 𝐶2 using the same input values for both circuits. Given
that our metamorphic transformations are semantics preserving, if
any pipeline-stage outputs diverge, a bug is detected. Specifically,
Circuzz checks whether each stage of the Circom pipeline (i.e.,
compilation, witness generation, proof generation, and proof verifi-
cation), if executed, succeeds or fails (due to the same reasons) for
both circuits. For the witness-generation stage, Circuzz addition-
ally checks whether the generated witnesses are equivalent. Note
that this check is only executed if the generated input values satisfy
the constraint on line 4.

1https://github.com/Rigorous-Software-Engineering/circuzz

It is the latter check (of the generated witnesses) that fails when
running Circom on 𝐶1 and 𝐶2 from Fig. 3. In particular, Circuzz
found that out0 of 𝐶1 evaluates to a very large number, whereas
out0 of𝐶2 evaluates to zero. Note that the constraint system gener-
ated by the compiler from a given circuit operates over a finite field;
its size may be determined by an underlying elliptic curve, and in
this case, Circuzz randomly selected the BN254 curve. In other
words, all arithmetic operations are computed modulo prime 𝑝 ,
thereby wrapping around this value. The difference in the outputs
for𝐶1 and𝐶2 was caused because Circom did not apply the modulo
operation to constants before they were used in an expression; this
can result in computing different values in the presence of bitwise
operations, such as the complement in our circuits. Consequently,
any one of the above metamorphic transformations alone would
have also revealed the bug.

This bug may compromise both the soundness and completeness
of Circom. To demonstrate this, consider inserting the statement
assert(out0 == v), where v is the correct constant value of the
bitwise complement, after line 7 of Fig. 3c. This assertion is expected
to hold. However, for the buggy version of Circom, it fails, exposing
a completeness issue. In contrast, when inserting the statement
assert(out0 != v), the assertion is expected to be violated. Yet,
the pipeline stages succeed, exposing a soundness issue.

The developers fixed the issue by applying the modulo operation
to all constants in the abstract syntax tree.

3 Approach

We now describe our technique for circuit-processing pipelines
in detail. Before delving into each of its five steps, we provide an
overview of our intermediate language for circuits.

3.1 Circuit Intermediate Language

To easily support fuzzing of diverse circuit-processing pipelines,
we generate and apply metamorphic transformations on circuits
expressed in an intermediate language. This enables reusing the
first two steps of our technique, namely circuit generation and
transformation, for any new pipeline. In other words, to test a new
pipeline, it is primarily the circuit-translation step that must be
extended to translate to the corresponding ZK language. The bug-
detection step also needs to be slightly adapted to execute the new
pipeline.

On a high level, our intermediate language, CircIL, mainly cap-
tures a common subset of many existing ZK languages, such as
Circom or Noir. These languages essentially provide syntactic
sugar for expressing the underlying constraint system in a user-
friendly way. For this reason, the simplest intermediate language
could perhaps be one that directly defines a constraint system, such
as R1CS (Rank-1 Constraint System). However, an intermediate
language that is too simple would make it difficult to test certain
features of high-level target languages, such as Circom, and their
corresponding pipelines. We, therefore, designed a language that
is as expressive as possible while still supporting features that can
easily be translated to many popular ZK languages.

CircIL allows defining a circuit using three basic primitives:
(1) a set of input variables (e.g., line 1 of Fig. 3a), (2) a set of output
variables (e.g., line 2 of Fig. 3a), and (3) a sequence of statements (i.e.,

https://github.com/Rigorous-Software-Engineering/circuzz

XYZ ’XX, June 03–05, 20XX, Woodstock, NY Christoph Hochrainer, Anastasia Isychev, Valentin Wüstholz, and Maria Christakis

1

Circuit

Generation

𝑂𝑢𝑡

∗

𝐼𝑛0 +

𝐼𝑛1 𝐼𝑛2

2

Circuit

Transformation

𝑂𝑢𝑡

+

∗

𝐼𝑛0 𝐼𝑛1

∗

𝐼𝑛2

3

Circuit

Translation

input In0, In1, In2

output Out

Out <-- (In0 * In1) + (In0 * In2)

input In0, In1, In2

output Out

Out <-- In0 * (In1 + In2)

4

Input

Generation

In0 <-- 0

In1 <-- 1

In2 <-- p

In0 <-- 1

In1 <-- 1

In2 <-- p

In0 <-- 0

In1 <-- 1

In2 <-- p

...

5

Bug

Detection

. State2State1

OR

≡ State2State1

Next Input

Bug

Figure 2: Overview of our fuzzing technique for circuit-processing pipelines.

1 inputs : in0 , in1

2 outputs: out0

3 out0 = (~ 𝑝)

4 assert(in0 != in1)

(a) Circuit𝐶1 in CircIL.

1 inputs : in0 , in1

2 outputs: out0

3 out0 = (~ (((1 - 0) / 1) * 𝑝))

4 assert(in0 != in1)

(b) Circuit𝐶2 in CircIL.

1 pragma circom 2.0.6;

2

3 template main_template () {

4 signal input in0 , in1;

5 signal output out0;

6 out0 <-- (~ 𝑝);

7 assert(in0 != in1);

8 }

9 component main = main_template ();

(c) Circuit𝐶1 in Circom.

1 pragma circom 2.0.6;

2

3 template main_template () {

4 signal input in0 , in1;

5 signal output out0;

6 out0 <-- (~ (((1 - 0) / 1) * 𝑝));

7 assert(in0 != in1);

8 }

9 component main = main_template ();

(d) Circuit𝐶2 in Circom.

Figure 3: An example logic bug found by Circuzz in Circom.

the body), which expresses a set of constraints on the inputs and
outputs (e.g., lines 3–4 of Fig. 3a). The body may contain two types
of statements: (a) assignments to output variables, where the right-
hand side is an expression over the underlying field (determined
by an elliptic curve), such as line 3 of Fig. 3a, and (b) assertions
of Boolean expressions (i.e., the field elements 0 and 1), such as
line 4 of Fig. 3a. Expressions may be arbitrarily complex by using
common operators, such as addition, multiplication, or equality,
supported by the target ZK languages.

However, some target languages support additional operators.
For instance, the bitwise complement is only used by Circom. As
we saw in Fig. 3a, CircIL supports this operator; we provide a list
of all CircIL operators below.

Unary operators: - (negation), ~ (bitwise complement), and !

(Boolean not)
Binary operators: +, -, *, /, % (modulo), ** (power), & (bitwise

and), | (bitwise or), ^ (bitwise xor), && (Boolean and), ||

(Boolean or), ^^ (Boolean xor), ==, !=, <, <=, >, and >=

Ternary operators: _ ? _ : _ (conditional)

To generate circuits using only operators of the target ZK language,
Circuzz takes as input a language-specific configuration that en-
ables an appropriate operator subset.

In general, it is easy to extend our intermediate language to
support language-specific operators. Their translation to the tar-
get language is typically straightforward and enables generating
more complex expressions. After including such operators in Cir-
cIL, we can also use them to define additional, language-specific
metamorphic transformations.

3.2 Circuit Generation

The first step of our fuzzing technique randomly generates circuits
based on the intermediate-language grammar.

The circuit-generation component of Circuzz is highly con-
figurable allowing users to control the circuit size (by setting the
maximum number of inputs and outputs, the maximum number of
assertions, and the maximum depth of the generated expressions)
as well as the circuit structure (by defining the allowed operators
and setting custom weights determining how often a grammar rule

Fuzzing Processing Pipelines for Zero-Knowledge Circuits XYZ ’XX, June 03–05, 20XX, Woodstock, NY

should be applied). Based on the given configuration, Circuzz gen-
erates a random number of inputs, outputs, and assertions. It then
generates random expressions to be assigned to outputs and used in
assertions. The expressions may contain constants, inputs, outputs
as well as allowed unary, binary, and ternary operators.

3.3 Circuit Transformation

The second step of our technique applies random metamorphic
transformations to a circuit 𝐶1 generated by the previous step.
The transformations are designed such that the resulting circuit 𝐶2
preserves the semantics of𝐶1. We can express such transformations
using a set of rewrite rules that rewrite a circuit expressed in the
intermediate language.

Rewrite rules. We developed a domain-specific language (DSL)
for defining rewrite rules and used it to define a total of 87 rules
(see Appx. A for the complete set of rules).

On a high level, the rewrite rules are based on pattern matching.
Each rule is a triple, where the first element provides a unique rule
identifier, the second a pattern to match in the intermediate lan-
guage, and the third a rewrite template. For example, the following
rule

{"one-plus-zero", "1", "(1 + 0)"}

is called one-plus-zero and replaces any occurrence of constant 1
by the expression (1 + 0). We could also generalize the above rule
as follows:

{"any-plus-zero", "?a", "(?a + 0)"}

"?<NAME >" (?a in the above rule) matches any expression and
names it such that it may be referenced in both the match pattern
and rewrite template. For example, the following rule

{"assoc-add", "((?a + ?b) + ?c)", "(?a + (?b + ?c))"}

employs the associative property of addition and would rewrite an
expression ((in0 + 1) + in2) to (in0 + (1 + in2)). Naturally,
multiple occurrences of a given name are used to express structural
equality, e.g., the match pattern "?a | ?a" would match

"(1 + 2) | (1 + 2)"

but not
"(1 + 2) | (2 + 1)".

Our DSL also allowsmatching expressions of a given type. Specif-
ically, "?<NAME >:<TYPE >" matches any expression of a particular
type, e.g., "?a:bool"wouldmatch 1 but not 42. Recall that all expres-
sions are elements of the field, and Boolean is a subtype consisting
of elements 0 and 1. Therefore, we currently only need to match
type bool, but in the future, our DSL could easily be extended to
support more types if necessary. For example, the following rule

{"pow2-to-mul", "(?a ** 2)", "(?a * ?a)"}

rewrites an expression raised to the power of two to the expression
multiplied by itself; no type specification is needed. The following
rule, however,

{"double-lor-bool", "?a:bool", "(?a || ?a)"}

creates a logical disjunction between a Boolean expression and itself.
Note that our intermediate language is untyped, and we perform

Boolean-type inference for pattern matching with such rewrite
rules.

Moreover, our DSL allows introducing new random expressions
as part of the rewrite template (i.e., the third component of the
triple). Specifically, "$<NAME >:<TYPE >" is used to generate a random
constant of a given type in the rewrite template and name it. Again,
the type specification is only necessary for generating random
Booleans. For example, the following rule

{"sub-add-random-value", "?a", "((?a - $r) + $r)"}

first subtracts a random constant from an expression and then
adds it again; no type specification is needed. The following rule,
however,

{"double-lxor-bool", "0", "($r:bool ^^ $r:bool)"}

replaces constant 0 with the exclusive disjunction of a random
Boolean and itself.

In general, using this domain-specific language, we have defined
rules employing the identity, commutative, associative, and dis-
tributive properties of logical, bitwise, and arithmetic operators, De
Morgan’s laws, etc.

Stacked transformations. To increase the likelihood of finding
logic bugs in the tested pipelines, Circuzz stacks the above circuit
transformations. In other words, it may apply multiple rewrites
to circuit 𝐶1 to obtain 𝐶2. This is possible since, in our case, all
transformations have the same equivalence oracle, i.e., that no
stage outputs should diverge.

3.4 Circuit Translation

Once we have two semantically equivalent, but syntactically differ-
ent (after applying transformations), circuits 𝐶1 and 𝐶2, the next
step translates these circuits from the intermediate language to
the ZK language of the processing pipeline under test. Circuzz
currently supports four diverse ZK languages, namely Circom,
Corset, Gnark, and Noir. In particular, Circom is a low-level
circuit language, which served as an inspiration when designing
our intermediate language. One of its characteristics is that it is
modular, thereby allowing users to define small, parameterizable
circuits, called templates (see Fig. 3), that may then be combined
to form larger circuits. On the other hand, Corset is Lisp-based,
Gnark uses plain Go and provides a high-level API for writing
circuits, and Noir is Rust-based.

This circuit-translation step of Circuzz is one of the two steps
(besides the bug-detection step) that always needs to be extended
when adding support for a new ZK language. The main task is
to map all supported terminal and non-terminal symbols of the
intermediate language to the corresponding symbols of the ZK lan-
guage. For instance, for Gnark, we map a + b to api.Add(a, b)

and assert(a <= b) to api.AssertIsLessOrEqual(a, b). For cer-
tain target languages, such as Circom, this step is straightforward,
but for other languages that are quite different from CircIL, such
as Corset, the translation is more involved.

XYZ ’XX, June 03–05, 20XX, Woodstock, NY Christoph Hochrainer, Anastasia Isychev, Valentin Wüstholz, and Maria Christakis

3.5 Input Generation

The input-generation step of Circuzz produces inputs (𝐼𝑃 and 𝐼𝑆)
for circuits 𝐶1 and 𝐶2. We currently use blackbox fuzzing to ran-
domly generate elements of the field. However, since the size of
most supported fields is huge, we have introduced the ability to
configure a set of constants that may be used during circuit gener-
ation as interesting boundary values. Examples of such constants
are 0, 1, the size of the field 𝑝 (typically a prime number), 𝑝 − 1, etc.
We randomly pick boundary values with a small probability (e.g.,
5%).

Note that we do not know if the generated inputs should satisfy
the constraints that are expressed using the generated circuit. As a
result, some later pipeline stages may not always be executed since
unsatisfiable inputs do not produce a witness that can be used to
run the prover or verifier (see RQ3 in Sect. 4 for more details).

3.6 Bug Detection

As the final step of our technique, bug detection is specific to each
processing pipeline under test and constitutes the other step of
Circuzz that needs to be extended when adding support for a
new ZK language. For instance, certain pipelines may combine
the compilation and witness-generation stages or support several
witness-generation and proving engines, so their execution requires
configuration. Moreover, detecting bugs in each pipeline involves
retrieving different artifacts, e.g., witnesses, error messages, return
codes, etc., which are non-standard across pipelines.

Oracles. The bug-detection step executes the processing pipeline
under test for both circuits 𝐶1 and 𝐶2 using the same inputs and
reports a bug if our metamorphic oracle is violated, i.e., if any
difference is detected between the two execution behaviors. For
instance, a bug is detected if a witness is obtained only for one
of the two semantically equivalent circuits. Circuzz typically ex-
ecutes each pipeline stage for both circuits and checks for bugs
before moving on to the next stage. This allows to detect any dif-
ferences in execution behavior as soon as possible without wasting
time on later stages, such as proving or verification, which can be
computationally expensive.

Besides the metamorphic oracles,Circuzz checks additional non-
metamorphic, correctness properties per execution. For instance, a
bug is reported if the witness generator generates a valid witness,
but the prover fails to produce a valid proof. Similarly, we check
that every valid proof can be successfully verified by the verifier.
In future work, we plan to extend our oracles for the verification
stage, for instance, by also checking if destructive transformations
of generated proofs fail to be verified.

Additional metamorphic transformations. Optionally, the bug-
detection step may introduce further metamorphic transformations,
not on the input circuits, but on the pipeline settings. More specifi-
cally, we observed that many pipelines support settings that should
not change their functional behavior. For instance, similar to many
C compilers, Circom supports a setting for selecting the level of
optimizations to be applied to the generated constraint system.
Such settings can help in detecting additional bugs as follows. We
randomly select a pipeline setting 𝑆1 for processing 𝐶1 and obtain

a setting 𝑆2 for processing 𝐶2 by applying an equivalent metamor-
phic transformation on 𝑆1; we expect our oracle to still hold. For
example, in Circom, the --O2 setting, which applies Gauss elimi-
nation to remove as many linear constraints as possible, could be
transformed into the --O0 setting, which disables all optimizations.
These transformations of pipeline settings were especially effec-
tive for Corset, where Circuzz found 3 logic bugs due to such
transformations.

3.7 Test-Throughput Optimizations

Certain pipeline stages are computationally expensive, for instance,
proof generation. Consequently, when testing ZK pipelines, the
test throughput is much lower (often seconds or even minutes per
test case) than for many other fuzzing targets, such as parsers (of-
ten milliseconds per test case) or compilers (often less than a few
seconds per test case). However, test throughput is an important
aspect of effective fuzzers. For this reason, Circuzz implements op-
timizations to increase the unusually low throughput when testing
ZK pipelines.

Power schedule. An obvious optimization is to skip the slower
prover and verifier stages for some tests, but the interesting ques-
tion is when to skip. We initially skipped slower stages randomly
with a (fixed) high probability, but then refined our approach to
more fairly test the initial (faster) stages (i.e., compilation and wit-
ness generation) and the subsequent (slower) stages (i.e., proof
generation and verification). More specifically, Circuzz is given a
target ratio 𝜌 and, for each test, it only executes the later stages
if 𝑇2/(𝑇1 + 𝑇2) < 𝜌 , where 𝑇1 is the total time we have already
spent executing the initial stages and 𝑇2 is the total time we have
already spent executing the later stages. By default, we use 𝜌 = 0.5
to roughly balance the time that is spent in the faster and slower
stages. Over time, Circuzz dynamically adjusts when to skip the
slower stages, thereby converging toward the desired target ratio.

This approach can be viewed as a novel “power schedule” [9]
assigning energy to different pipeline stages. The power schedule
directly exploits the ZK-pipeline structure and could be applied
to other systems with a similar structure; for instance, compilers
with very expensive optimization stages, or program verifiers with
SMT-based verification stages.

Circuit size and complexity. We also observed that the size and
complexity of the generated circuits has a tremendous effect on the
performance of the pipeline stages. In particular, small circuits (e.g.,
circuits with few assertions, expressions of small depth, etc.) are
preferable since they tend to be processed much faster. We hypoth-
esize that most bugs can be detected with small circuits (see RQ3
and RQ4 in Sect. 4 for more details). Similar observations have been
made in other domains; for instance, several concurrency testing
tools, such asCuzz [12], only explore very few context switches. For
this reason, Circuzz is, by default, configured to produce smaller
and less complex circuits (by controlling the number of assertions,
expression depth, etc.).

Another interesting side effect of large and complex circuits,
especially those with several assertions, is that they make input
generation more challenging—many randomly generated inputs

Fuzzing Processing Pipelines for Zero-Knowledge Circuits XYZ ’XX, June 03–05, 20XX, Woodstock, NY

may not satisfy the assertions. This prevents the fuzzer from effec-
tively testing later stages of a ZK pipeline, such as proof generation
and verification. For less complex circuits, we can effectively test
those stages with blackbox input generation (see RQ3 and RQ4 in
Sect. 4 for more details). More complex circuits would probably
require feedback-guided (i.e., greybox) or whitebox [21] input gen-
eration to satisfy their constraints. Unfortunately, whitebox fuzzing
would likely further reduce the test throughput, especially due to
overhead from constraint solving. In future work, we plan to explore
alternative input generation techniques and further optimizations.

Circuit bundling. Finally,Circuzz also implements optimizations
that are specific to certain pipelines. For instance, consider that
for Gnark, each circuit needs to be compiled by the regular Go
compiler, which is costlier than the compilation stage of other
pipelines. To amortize this overhead, Circuzz may bundle multiple
circuit pairs (i.e., a generated and a transformed circuit) that are
then (batch-)processed by the pipeline. In other words, Circuzz
can translate hundreds of circuit pairs into a single Go test file
such that all circuits are compiled together. Since Go is able to
execute individual tests (i.e., circuit pairs) in parallel, this bundling
optimization has the additional benefit of parallelizing the bug-
detection step in Circuzz for free.

4 Experimental Evaluation

We evaluate Circuzz by testing four ZK pipelines, namely Cir-
com, Corset, Gnark, and Noir. In our evaluation, we address the
following research questions:
RQ1: How effective is Circuzz in detecting logic bugs in diverse

ZK pipelines?
RQ2: What are characteristics of the detected bugs?
RQ3: How efficient is Circuzz?
RQ4: How do the design choices and settings of Circuzz affect its

effectiveness?

4.1 Zero-Knowledge Pipeline Selection

For evaluating the effectiveness and generality of our approach, we
selected four popular, diverse, and maintained ZK pipelines. From
a user perspective, they primarily differ in the ZK language for
specifying circuits, ranging from functional to imperative. However,
they also differ in many technical aspects of the processing stages,
such as the supported constraint systems and cryptographic curves.
Moreover, we chose actively maintained pipelines to ensure that
the developers would respond to any reported bugs. We, therefore,
required the latest activity in their repositories (i.e., commits and
responses to open issues) to be within the last two months. Next,
we provide a high-level overview of each tested pipeline.

Circom. At the time of writing, the Circom pipeline has 1.4K
stars on GitHub and over 280 forks. It is, for example, used to
implement the Tornado cash payment mixer (storing crypto-assets
worth ca. 580M USD as of January 2025). The Circom language is
imperative; it allows operations on constants, input, and output
signals, all of which are field elements.Circom circuits are compiled
to executable witness generators that, given a set of input signals,
can compute output signals and generate witnesses for the prover
and verifier of the pipeline.

Corset. The Corset language is functional and Lisp-like; it pro-
vides a limited set of operations and does not support output signals.
Columns constitute the basic building block of Corset circuits and
may be scalar or array-like; constraints are defined over columns.
In addition to the four common stages, the Corset pipeline has
an optional “check” stage that, given field-element assignments to
columns, checks whether the corresponding constraint system is
satisfied.

Gnark. At the time of writing, theGnark pipeline has 1.5K stars
on GitHub and over 400 forks. Like Corset, it is currently used to
implement the Linea blockchain (storing crypto-assets worth ca.
745MUSD as of January 2025). Circuits inGnark can be specified as
functions in the (general-purpose) Go language. Similar to Corset,
Gnark does not support output signals; all signals are considered
inputs, which are defined as structs over field elements. Moreover,
the whole pipeline is embedded in Go, and each stage must be called
using its API.

Noir. At the time of writing, the Noir pipeline has over 930
stars on GitHub and over 220 forks. It provides a strongly-typed,
Rust-like language for specifying circuits. Similar to Circom, Noir
supports explicit output signals that are computed and returned
by the circuits. Unlike the other pipelines, it allows input values
other than field elements. Since this is a unique feature of Noir,
we have not yet added support for it in Circuzz. Structurally, the
Noir pipeline differs from others by merging the compilation and
witness-generation stages.

4.2 Experimental Setup

Testing time. We started testing Circom in March 2024, and we
incrementally improved and extended our fuzzer to support more
ZK pipelines. We subsequently added support for Gnark (in June
2024), Corset (in July 2024), and Noir (also in July 2024). As shown
by this timeline, once Circuzz was mature enough, we were able
to add new pipelines without too much effort.

Due to this timeline however, we did not spend the same amount
of total fuzzing time on each pipeline. We estimate that we fuzzed
Circom for ∼5 months, Gnark for ∼4 months, and Corset and
Noir for ∼3 months. Note that, once a bug was detected, we typi-
cally did not continue fuzzing the corresponding pipeline until the
bug was fixed to avoid reporting duplicate issues.

For all pipelines, we tested either the latest stable release or
the main development branch (to potentially find bugs that were
introduced more recently).

Circuzz settings. Over time, we refined the default setup for
Circuzz based on our experience. In particular, we identified the
following key settings and default values: (1) the maximum num-
ber of inputs and outputs (each defaulting to 2), (2) the maximum
number of assertions (defaulting to 2), (3) the maximum expression
depth (defaulting to 4), and (4) the maximum number of stacked
transformations that are applied to a generated circuit (defaulting
to 64). The former three may affect the size and complexity of the
circuits, and thus, the test throughput. The latter aims to strike a
balance between finding bugs faster (by applying more transforma-
tions) and facilitating debugging (by not producing transformed
circuits that differ too much from the generated ones). As discussed

XYZ ’XX, June 03–05, 20XX, Woodstock, NY Christoph Hochrainer, Anastasia Isychev, Valentin Wüstholz, and Maria Christakis

in Sect. 3.7, we use a default target ratio of 𝜌 = 0.5 to roughly bal-
ance the time that is spent in the initial (typically faster) stages (i.e.,
compilation and witness generation) and the subsequent (typically
slower) stages (i.e., proof generation and verification).

In RQ4, we compare different configurations of these settings in
terms of their bug-finding effectiveness. To this end, we evaluate
which configurations are able to refind bugs that we reported to
the pipeline developers. To ensure that a bug detected by a given
configuration indeed corresponds to the original, reported bug (and
not to another one), we apply the fix that was provided by the
developers and check whether the buggy behavior disappears. For
this reason, we only use fixed bugs for evaluating the effectiveness
of different Circuzz configurations.

Fuzzing campaigns. To ensure a fair comparison and mitigate the
effects of randomness in the fuzzing process, we run 10 independent
fuzzing campaigns for each Circuzz configuration. We limit the
duration of each campaign to 24 hours. In general, we did not limit
the time per pipeline execution. However, even though Corsetwas
generally one of the fastest pipelines, we observed that it would
occasionally (i.e., only for a few circuits) use over 1TB of memory
and take several hours to run. For this reason, we introduced an
upper bound of 8GB memory usage per pipeline execution (only
for Corset).

Hardware. We performed all experiments on a machine with an
AMD EPYC 9474F CPU @ 3.60GHz and 1.5TB of memory, running
Debian GNU/Linux 12 (bookworm). To avoid issues due to hardware
resources and obtain reproducible results, we restricted each fuzzing
campaign to use a single logical CPU core.

4.3 Experimental Results

We now discuss our findings for each research question.

RQ1: Effectiveness of Circuzz. Tab. 1 shows all unique bugs found
by Circuzz in the ZK pipelines we tested. The first column assigns
an identifier (ID) to each bug and links to the bug report. We assign
a number to fixed bugs and a letter to others. The second and third
columns show the ZK pipeline in which the bug was found, and the
bug status (i.e., reported, confirmed, or fixed). The fourth column
indicates the type of logic bug that was exposed, i.e., whether it
compromised soundness, completeness, or both. The fifth and sixth
columns provide the pipeline stage where the bug was detected,
and the oracle that detected it. Here, “MT” denotes a metamorphic
oracle, and “VC” stands for validity check, i.e., a non-metamorphic,
correctness property asserting the successful execution of a pipeline
stage (see Sect. 3.6). The last column includes a short description of
the bug.

In total, Circuzz detected 16 unique bugs, 15 of which were previ-

ously unknown. Bug 13 was found in the latest Noir release, but the
developers had independently detected and fixed it in their devel-
opment branch. Recall from Sect. 1 that ZK pipelines are regularly
audited, and their developers follow strict procedures; yet, Circuzz
was effective in detecting previously unknown, logic bugs. 13 of
the bugs were detected due to violating a metamorphic oracle and 3

due to violating a validity check. Of the 13 that were detected due to
violating a metamorphic oracle, 10 involved metamorphic transfor-
mations on the circuits and 3 on the pipeline settings (see Sect. 3).

The latter transformations (on the pipeline settings) uncovered
bugs 5, 6, and 7 in Corset.

Circuzz also found several compiler crashes as a by-product,
but we did not report most of them to focus on critical issues.
For instance, when reporting bug 5, we discovered another, less
severe bug, and developers opened an independent issue to track
it. Crashes in the compiler are less critical since they would be
found by the circuit developer and, therefore, cannot be exploited
by attackers to hack end users of the circuit. On the other hand,
crashes in later stages (e.g., proof generation or verification) are
critical since they typically compromise completeness; for instance,
a crash in Gnarkmay enable a DoS attack on the Linea blockchain.

15 bugs are already fixed by the pipeline developers, attesting to

their critical nature. Addressing bug A is “quite a challenge” for the
developers, which is why it has not yet been fixed. Even though
most of our bugs were fixed quickly, some of them within hours of
our report, they were often non-trivial to address. For instance, for
bugs 5 and 10, the initial proposed fixes addressed the underlying
problem only partly, and Circuzz quickly uncovered follow-up
issues 6 and 11, respectively, which required additional changes in
the code.

As shown in the table, 3 bugs were found in the compilation stage,
7 in the witness-generation stage, and 2 in the proof-generation
stage.Circuzz found all 4Corset bugswhen executing the optional
check stage, which checks the validity of the constraint system
generated from a given circuit. Note that we run the Corset check
stage before the compilation stage. We find it encouraging that
Circuzz found most issues in early pipeline stages, which is likely
due to the fact that the proof-generation and verification stages are
audited even more thoroughly. Additionally, since these stages are
significantly more computationally expensive than others, we ran
them less frequently (according to our target ratio 𝜌). While we
can configure Circuzz to execute the full pipeline more often, that
would significantly decrease test throughput (see RQ4).

The feedback from the pipeline developers was overwhelmingly
positive. For instance, one of the main developers of Gnark re-
sponded with “that fuzzer is killing it!” when we reported bug 12.
In response to bug 8, Corset developers called it a “critical bug
actually. Good spotting!”. It turned out that a feature to support
word-wise normalization was only partially implemented, but it
was used in the standard library. Overall, all teams strongly encour-
aged us to keep fuzzing their code.

RQ2: Detected logic bugs. In the following, we provide a more
detailed description of bugs found by Circuzz in each of the tested
pipelines. Note that, for simplicity, we show manually minimized
versions of the generated and transformed circuits. In practice, we
also manually minimized the circuits that we included in our bug
reports. This tends to make it much easier for developers to debug
and fix the issues.

Fig. 4a shows two circuits that revealed bug 2. Circuzz gener-
ated circuit C1 (top) that computes the bitwise complement of 0.
It then transformed C1 into the equivalent circuit C2 (bottom) by
replacing 0 with 0 ^ 0. Circom only allows quadratic constraints,
which ~ (0 ^ 0) is not, therefore Circuzz (internally) rewrites
this expression into the intermediate assignments on lines 8 and
9. When executed, the two circuits computed different values for

https://github.com/noir-lang/noir/issues/5463
https://github.com/Consensys/corset/issues/219
https://github.com/Consensys/corset/issues/241
https://github.com/Consensys/corset/issues/243
https://github.com/Consensys/corset/issues/219
https://github.com/Consensys/corset/issues/227
https://github.com/iden3/circom/issues/269
https://github.com/Consensys/corset/issues/219
https://github.com/Consensys/gnark/issues/1227
https://github.com/Consensys/corset/issues/241
https://github.com/Consensys/gnark/pull/1229
https://github.com/Consensys/gnark/pull/1234
https://github.com/Consensys/corset/issues/244
https://github.com/iden3/circom/issues/283

Fuzzing Processing Pipelines for Zero-Knowledge Circuits XYZ ’XX, June 03–05, 20XX, Woodstock, NY

Table 1: Unique logic bugs detected by Circuzz.

Bug

ID

Pipeline Status Type Stage Oracle Description

A Circom confirmed Completeness Prover VC “Polynomial is not divisible” error
1 Circom fixed Both Witness MT Wrong bit-width used for constant evaluation
2 Circom fixed Both Witness MT Incorrect evaluation of bitwise complement of zero
3 Circom fixed Both Witness MT Inconsistent evaluation of field prime
4 Circom fixed Both Witness MT Inconsistent evaluation of a small field prime
5 Corset fixed Soundness Check MT Inconsistent behavior of expansion and native flags
6 Corset fixed Soundness Check MT Incorrect evaluation of constraints using expansion
7 Corset fixed Soundness Check MT Incorrect expansion transformation of conditionals
8 Corset fixed Both Check MT Incorrect evaluation of normalized loobean
9 Gnark fixed Both Witness MT Inconsistent evaluation of ∨ for constants and signals
10 Gnark fixed Completeness Witness MT Incorrect evaluation of AssertIsLessOrEqual

11 Gnark fixed Completeness Compiler MT Zero bit length for binary decomposition on constants
12 Gnark fixed Completeness Compiler MT Compiler panic on branch with unchecked cast
13 Noir fixed Completeness Witness MT Incorrect evaluation of asserted condition
14 Noir fixed Completeness Prover VC Proof failure due to insufficiently large string
15 Noir fixed Completeness Compiler VC Stack overflow for < with nested expressions

1 template C1() {

2 signal a;

3 a <-- (~ 0);

4 }

5

6 template C2() {

7 signal a, tmp , zero;

8 tmp <-- (0 ^ 0);

9 zero <-- (~ tmp);

10 a <== zero;

11 }

(a) Bug 2 in Circom.

1 (defcolumns in0)

2 (defconstraint C1 ()

3 (vanishes! (let ((out0 in0))

4 (let ((out1 0))

5 (eq!
6 (is-not-zero!
7 (eq!
8 (if (is-zero out1) out1 1)

9 (neq! in0 in0)))

10 (~or! 0 out0))))))

(b) Bug 6 in Corset.

1 func (circuit *C1) Define(api frontend.API

2) error {

3 api.AssertIsLessOrEqual (1, 0)

4 return nil
5 }

6

7 func (circuit *C2) Define(api frontend.API

8) error {

9 api.AssertIsLessOrEqual (1, api.Or(0, 0))

10 return nil
11 }

(c) Bug 10 in Gnark.

1 fn main(input : Field) -> pub Field {

2 let b2 : [u8; 32] = input.to_be_bytes ();
3 let b2_f =

4 std::field:: bytes32_to_field(b2);
5 assert (0 != b2_f , "Assertion violated");

6 0

7 }

(d) Bug 14 in Noir.

Figure 4: Critical bugs detected by Circuzz in Circom (top left), Corset (top right), Gnark (bottom left), and Noir (bottom

right), and fixed by the developers.

signal a. The discrepancy came from a difference in the sign of 0
and zero: constant 0 was considered negative, while signal zero

positive, resulting in different bitwise complements. The developers
fixed the issue by enforcing a positive sign on all zero operands of
the bitwise complement. Interestingly, bug 3 presented earlier (see
Fig. 3) was discovered by a syntactically similar pair of circuits but
uncovered a distinct issue, as we explain in Sect. 2.

Fig. 4b shows bug 6 found in Corset; there is no need to under-
stand the functionality of the code other than observe that there
is an if-condition nested within an expression on line 8. This issue
was discovered by running Corset on a single circuit, namely C1

from Fig. 4b, but with different flags. Circuzz first ran the pipeline
with the -N flag, which enables native mode. By default, all oper-
ations are performed using BigInt objects, and native mode uses
(mathematical) field values instead. Circuzz then transformed this

https://github.com/iden3/circom/issues/269
https://github.com/iden3/circom/issues/270
https://github.com/iden3/circom/issues/283
https://github.com/iden3/circom/issues/288
https://github.com/iden3/circom/issues/298
https://github.com/Consensys/corset/issues/219
https://github.com/Consensys/corset/issues/241
https://github.com/Consensys/corset/issues/243
https://github.com/Consensys/corset/issues/244
https://github.com/Consensys/gnark/pull/1181
https://github.com/Consensys/gnark/issues/1227
https://github.com/Consensys/gnark/pull/1229
https://github.com/Consensys/gnark/pull/1234
https://github.com/noir-lang/noir/issues/5463
https://github.com/AztecProtocol/aztec-packages/issues/8745
https://github.com/noir-lang/noir/issues/6150
https://github.com/iden3/circom/issues/283
https://github.com/Consensys/corset/issues/241
https://github.com/Consensys/gnark/issues/1227
https://github.com/AztecProtocol/aztec-packages/issues/8745
https://github.com/iden3/circom/issues/288
https://github.com/Consensys/corset/issues/241

XYZ ’XX, June 03–05, 20XX, Woodstock, NY Christoph Hochrainer, Anastasia Isychev, Valentin Wüstholz, and Maria Christakis

setting into the -Ne flag. The e part of the flag enables expansion
mode, which rewrites constraint expressions into a lower-level, but
equivalent, form. Even though flag -e should not affect the con-
straint satisfiability, the constraints were found SAT in native mode
but UNSAT when enabling both the native and expansion modes.

After closer inspection, the developers responded that “there is a
problemwith the handling of if-conditions when they are nested within

certain expressions”. The problematic part of the code, which was
only triggered when enabling expansion mode, intended to hoist
the nested if-conditions into separate constraints. The proposed
fix changed the order of cases when pattern matching a nested
if-condition. However, when testing the fixed version, Circuzz
revealed that, even though the fix worked for the provided circuit,
there were still cases where Corset did not treat if-conditions
correctly. Based on this finding, we reported bug 7. The developers
concluded that “the related issue is in the same (source-code) file as

the original problem, but in a different method”. To fix the issue, they
had to rework the handling of nested if-conditions (in expansion
mode) from scratch.

Bug 10 refers to an issue discovered by Circuzz in the evaluation
of the AssertIsLessOrEqual primitive in Gnark. Consider circuit
C1 shown in Fig. 4c. For C1,Gnark failed to generate a witness since
the assertion does not hold. Then, Circuzz applied the following
rewrite rule

{"zero-or", "?a", "(?a | 0)"}

that transformed 0 (line 3) into the equivalent api.Or(0, 0) (line 9).
Unlike for C1, Gnark successfully generated a witness for the trans-
formed circuit C2. TheGnark developers modified the assertion API
code to correctly handle the special case where the first argument
of AssertIsLessOrEqual is a constant.

This fix, however, overlooked another corner case where the
first constant in the assertion is zero. For instance, when replac-
ing 1 by 0, the proposed fix did not work, and the metamorphic
oracle still failed. Circuzz found this corner case in a subsequent
fuzzing campaign (bug 11). The final fix removed the code that was
trying to optimize the evaluation of such assertions for constant
arguments. The two iterations that were required to fix the root
issue suggest that, despite thorough testing on the developer side
(including unit and regression tests), no test was able to catch nei-
ther the initial issue (bug 10), nor the issue that remained after the
partial fix (bug 11). This provides a glimpse into the complexity
that developers of ZK pipelines are facing and highlights the need
for automated test generation.

Fig. 4d shows the circuit that revealed bug 14 in the Noir prover.
Before generating a proof,Noir creates a structured reference string
(SRS), which records proving and verification parameters as well
as a sequence of samples from some complex (secret) distribution.
This string is later used to verify the correctness of the proof. The
number of required samples in the SRS depends on the circuit
and is estimated automatically. When proving our example circuit,
the Noir pipeline crashed because the (automatically) estimated
number of samples in the SRS was too small. This bug was revealed
as a violation of our validity check that expects a successful witness
generation to be followed by a successful proof. Developers fixed the
issue by changing the algorithm to over-approximate the number
of necessary samples.

Overall, the presented bugs demonstrate that Circuzz is able
to identify a diverse—for instance, with respect to the different ZK
pipelines, oracles, and affected pipeline stages—set of critical bugs
that developers are eager to fix.

RQ3: Efficiency of Circuzz. We primarily evaluate the efficiency
of Circuzz in terms of its bug-finding time. We additionally measure
the number of circuits that had to be generated to find a given bug.
We track these metrics for each fixed issue discovered by Circuzz
(listed in Tab. 1). We only use fixed issues for this evaluation since
the difference in behavior of buggy and fixed code provides a reliable
way to identify if a given bug was indeed detected by the fuzzer.

Tab. 2 summarizes the results of this experiment across 10 inde-
pendent fuzzing campaigns, i.e., using 10 different random seeds to
randomize the fuzzing process, each with a time limit of 24 hours.
We use the default configuration of Circuzz as described in Sect. 4.2,
i.e., up to 2 inputs, outputs, and assertions per circuit, expressions
of depth up to 4, and up to 64 stacked transformations. The first
two columns of the table show the ZK pipeline under test and the
unique bug IDs (from Tab. 1), and the third column presents the
percentage of generated circuit inputs that satisfy the correspond-
ing constraint system. The remaining columns show the minimum,
median, and maximum bug-finding times across all campaigns as
well as the minimum, median, and maximum number of circuits
that were generated until each bug was found.

Circuzz reliably detects all issues in all 10 campaigns, and the

median bug-finding time for 13 (out of 15) bugs is less than 1 hour.

The median number of generated circuits that are needed to detect

these 13 bugs is less than 850.

We observe that the bug-finding time varies greatly across dif-
ferent pipelines. This is expected since pipelines differ structurally,
in the way they are executed as well as in the programming lan-
guage in which they are implemented. The median time for a single
pipeline run is 0.5s for Circom, 0.1s for Corset, 3s for Gnark, and
6s for Noir. Thus, even for the same number of generated circuits,
Gnark and Noir are expected to have higher bug-finding times.
For instance, Gnark is essentially a library, and a pipeline run is a
sequence of API calls that need to be compiled before the circuit
compilation; similarly, a Noir pipeline run performs additional
analysis of circuits and executes a virtual machine. Of course, there
are also differences across pipelines in how much time is spent in
each stage. This affects how often the faster and slower stages are
executed, which in turn impacts the efficiency of Circuzz.

It is also worth noting that all bugs are detected using the de-

fault configuration of Circuzz, which generates small and relatively

simple circuits. Consequently, the percentage of SAT circuit inputs
(shown in the fourth column of Tab. 2) is always greater than 52%
despite the fact that inputs are generated using blackbox fuzzing.
Such a high percentage is important for the fuzzer’s effectiveness
since UNSAT circuit inputs typically cannot exercise later stages
of the pipeline, like proof generation and verification. A signifi-
cantly smaller percentage would, therefore, introduce unwanted
bias towards the earlier pipeline stages.

RQ4: Design choices and settings. In this research question, we
evaluate the effectiveness of several design choices and settings
in Circuzz. Specifically, we consider five variants of the default
configuration, each of which modifies a single setting: (1) maximum

https://github.com/Consensys/corset/issues/243
https://github.com/Consensys/gnark/issues/1227
https://github.com/Consensys/gnark/pull/1229
https://github.com/Consensys/gnark/issues/1227
https://github.com/Consensys/gnark/pull/1229
https://github.com/AztecProtocol/aztec-packages/issues/8745

Fuzzing Processing Pipelines for Zero-Knowledge Circuits XYZ ’XX, June 03–05, 20XX, Woodstock, NY

Table 2: Time and number of generated circuits that the default configuration of Circuzz needed to find a fixed issue across 10

independent fuzzing campaigns, each with a time limit of 24 hours.

ZK Bug SAT Time to bug Circuits to bug

Pipeline ID inputs min med max min med max

Circom

1 52.88% 38s 4m14s 13m47s 7 61 212
2 57.84% 13m08s 31m00s 1h00m30s 232 567 1265
3 57.38% 43s 13m30s 35m17s 19 210 717
4 57.53% 18s 7m19s 16m13s 8 108 247

Corset

5 65.08% 1s 17s 2m24s 3 11 66
6 64.21% <1s 20s 2m45s 5 17 117
7 61.17% 1s 3m35s 12m11s 5 91 340
8 63.26% 30s 3m26s 11m56s 19 112 377

Gnark

9 57.05% 1m54s 11m28s 25m12s 10 122 372
10 55.97% 1m13s 13m13s 44m21s 9 141 663
11 56.94% 2m01s 13m57s 39m17s 21 162 634
12 55.68% 30m20s 2h26m54s 20h21m27s 446 2361 15329

Noir
13 59.31% 29m45s 57m12s 5h07m37s 399 843 4963
14 58.88% 1h55m37s 10h17m13s 16h38m51s 488 2908 4780
15 59.05% 8m19s 48m40s 1h49m52s 25 184 450

number of inputs (changed from 2 to 8), (2) maximum number of
outputs (changed from 2 to 8), (3) maximum number of assertions
(changed from 2 to 8), (4) maximum expression depth (changed from
4 to 16), and (5) target ratio 𝜌 (changed from 0.5 to 1.0 to disable
the optimization). For this evaluation, we again run 10 independent
fuzzing campaigns for each of the five configuration variants (with
the same random seeds as for the default configuration).

We focus our comparison with the default configuration (see
Tab. 2) on the following metrics: (1) bug-finding time, (2) test
throughput (i.e., number of generated circuits per second), and
(3) percentage of SAT inputs. For each metric, we first compute
the median ratio of the variant over the default configuration for
each of the fixed bugs (excluding timeouts), and then calculate the
geometric mean across all bugs. The results are summarized in
Fig. 5.

Unsurprisingly, configurations that generate larger and more
constrained circuits—with increased expression depth and number

of assertions—take 6.9x and 2.3x longer to find the given bugs, and
there is a significant reduction in test throughput (0.4x and 0.8x)
in comparison to the default configuration. Moreover, the variant
with increased expression depth timed out for 7 out of 10 seeds for
bug 12, and for 2 seeds for bug 14. The variant with an increased
number of assertions timed out for 1 seed for bug 14. The only
outliers in terms of bug-finding time are Noir’s bugs 13 and 15.
Both require several nested expressions to be detected. As a result,
they are found faster when increasing the expression depth.

With the default configuration, ∼59% of all circuits with con-
crete inputs were SAT (see Tab. 2). Larger and more constrained
circuits predictably result in fewer SAT inputs: when increasing the
expression depth, only ∼42% of all generated inputs were SAT, and
when increasing the number of assertions, only ∼26% of all inputs
satisfied the corresponding constraint systems.

Increasing the number of circuit inputs does not have a drastic
effect on any of our metrics. This is expected since our circuit-
generation step does not force all inputs to be used. Therefore,

0 2 4 6 8

expression
depth

asserts

inputs

outputs

target ratio
= 1

6.9x

2.3x

1.1x

1.0x

2.1x

0.4x

0.8x

0.9x

0.8x

0.4x

0.7x

0.4x

1.0x

1.0x

1.0x

time to bug
test throughput
SAT inputs

Figure 5: Comparison of the Circuzz default configuration

with five variants. The bars show the relative change with

respect to threemetrics: (1) bug-finding time, (2) test through-

put, and (3) the percentage of SAT inputs.

simply addingmore signals does not necessarilymake the generated
circuits more complex.

Increasing the number of circuit outputs does not have a signif-
icant effect on the bug-finding time. However, it slightly reduces
the test throughput. Upon closer inspection, we observed that the
bug-finding time increased by 2.9x for Corset, but decreased for
other pipelines (0.5x for Circom, 0.9x for Gnark, and 0.7x for
Noir). Recall that Corset does not directly support outputs, and
our translation simply introduces additional temporary variables.
As a result, increasing the number of outputs increases the complex-
ity of Corset circuits. For other pipelines however, the additional
complexity is offset by making the oracle more effective—more out-
put values are included in each generated witness, and thus, more
data can be compared between the two witnesses of semantically
equivalent circuits.

https://github.com/iden3/circom/issues/270
https://github.com/iden3/circom/issues/283
https://github.com/iden3/circom/issues/288
https://github.com/iden3/circom/issues/298
https://github.com/Consensys/corset/issues/219
https://github.com/Consensys/corset/issues/241
https://github.com/Consensys/corset/issues/243
https://github.com/Consensys/corset/issues/244
https://github.com/Consensys/gnark/pull/1181
https://github.com/Consensys/gnark/issues/1227
https://github.com/Consensys/gnark/pull/1229
https://github.com/Consensys/gnark/pull/1234
https://github.com/noir-lang/noir/issues/5463
https://github.com/AztecProtocol/aztec-packages/issues/8745
https://github.com/noir-lang/noir/issues/6150
https://github.com/Consensys/gnark/pull/1234
https://github.com/AztecProtocol/aztec-packages/issues/8745
https://github.com/AztecProtocol/aztec-packages/issues/8745
https://github.com/noir-lang/noir/issues/5463
https://github.com/noir-lang/noir/issues/6150

XYZ ’XX, June 03–05, 20XX, Woodstock, NY Christoph Hochrainer, Anastasia Isychev, Valentin Wüstholz, and Maria Christakis

After considering the four variants that change settings in the
circuit generator, let us now consider the final variant that increases
the target ratio 𝜌 from 0.5 to 1.0, thereby disabling the optimization
that frequently skips the later, slower stages of a pipeline. In other
words, this variant always runs the entire pipeline, whereas the
default configuration (with the optimization) tries to balance the
time that is spent in the earlier and later pipeline stages.

With the optimization, we would expect that only a small por-
tion of all generated circuits execute the entire pipeline. For three
pipelines, this expectation is also confirmed experimentally. For
instance, Gnark’s prover is significantly slower than the rest of the
pipeline, and only 0.7% of all generated circuits execute the entire
pipeline. Circom and Noir’s provers are also slow, and only 3%
(for Circom) and 10% (for Noir) of all circuits execute the entire
pipeline. In contrast, for Corset, the full pipeline is executed for
35% of all circuits. This higher percentage results from the fact that
we include the optional check stage (checking the validity of the
constraint system that is generated from a given circuit) in the
earlier pipeline stages, thereby making them more computation-
ally expensive. To compensate, the later stages run more often for
Corset than for other pipelines.

When disabling the optimization, we observe higher bug-finding
times. The number of timeouts also increased without the optimiza-
tion: for bug 12 (6 out of 10 seeds timed out), bug 13 (1 out of 10), and
bug 14 (2 out of 10). This is not surprising since the test throughput
dropped to 0.4x in comparison to the default configuration.

As these results show, the default configuration provides a good
trade-off for effectively finding bugs across these different pipelines.

4.4 Threats to Validity

Our experimental results depend on the ZK pipelines under test,
their settings (e.g., the used curve or optimization level), and the
settings of Circuzz. Moreover, fuzzing per se is a random process,
and Circuzz randomly generates circuits, transformations, etc. To
address these potential threats, we selected four ZK pipelines that
differ in their circuit programming language, their architecture,
and backend components. In addition, we randomized the settings
of the pipelines (via metamorphic transformations) and systemati-
cally varied settings of Circuzz during our evaluation. To mitigate
effects of randomness on fuzzing, we ran 10 independent fuzzing
campaigns for each evaluated Circuzz configuration.

5 Related Work

We present the first systematic fuzzing technique for testing circuit-
processing pipelines. It uses metamorphic test oracles [6, 15, 38] to
find logic bugs. To the best of our knowledge, there is no existing
work on fuzzing entire circuit-processing pipelines, but the problem
itself has (independently) been described in the literature as an
open problem [13].

There is recent work on finding bugs in a circuit itself [40].
In contrast, our approach focuses on detecting bugs in a circuit-

processing pipeline. Both types of bugs could have catastrophic
consequences, but a bug in a circuit-processing pipeline may affect
many, or even all, deployed circuits.

The most closely related areas to our work are fuzzing for com-
pilers [14] and program analyzers [10, 11, 18, 20, 22–25, 27, 30, 31,

34, 37, 39, 41, 42, 44–46], such as software model checkers [8, 33]
and abstract interpreters [16]. After all, the first stage in circuit-
processing pipelines typically invokes a compiler for the ZK lan-
guage. Similarly, most program analyzers have a compiler frontend
that parses the input programs and often translates them into an
intermediate language used for the analysis. The translation could
generate a control-flow graph (as in many dataflow analyzers [26]
and abstract interpreters), a program in an intermediate verifica-
tion language [4, 19, 36] (as in many deductive verifiers, such as
Dafny [28] and Spec# [5]), or a GOTO program (as in CBMC [8]
and several other software model checkers).

On the other hand, regular compilers typically translate from a
high-level language (such as C) to a more low-level language (such
as assembly or LLVM bitcode). In contrast, ZK pipelines translate
to a constraint system, and there are several later stages that make
heavy use of cryptographic primitives for generating and verifying
proofs. ZK pipelines are, therefore, highly complex and may contain
even more subtle and hard-to-detect bugs than regular compilers.
MTZK [43] is a testing framework that aims to find bugs in ZK
compilers (and not entire pipelines) using metamorphic testing. In
other words, MTZK does not target the later stages of ZK pipelines,
which is a key contribution of our work.

Generally, most existing work on fuzzing for compilers and pro-
gram analyzers uses one or more of the following three types of
oracles: (1) specification-based oracles [6] (by comparing the ac-
tual behavior to a formal specification of the expected behavior),
(2) differential oracles [6, 32] (by comparing the behavior of two or
more implementations), and (3) metamorphic oracles. In this work,
we have mainly focused on metamorphic oracles and have used
specification-based oracles to express correctness properties of the
pipelines. In the future, we plan to incorporate more metamorphic
transformations for settings, for instance, by enabling different
proof systems via flags.

6 Conclusion

We have presented Circuzz, the first fuzzer for detecting logic bugs
in circuit-processing pipelines. It introducesCircIL, an intermediate
language for circuit generation, and rewrite rules over this language
for metamorphic circuit transformations. Circuzz translates the
generated and transformed circuits into the ZK language of the
pipeline under test and generates inputs for them using blackbox
fuzzing. Bugs are detected by executing the pipeline under test
on the circuits and checking for violations of the metamorphic
oracles and other non-metamorphic, correctness properties. We
used Circuzz to test four diverse ZK pipelines and detected critical
bugs in all of them.

Despite the bug-finding effectiveness of Circuzz, there are still
several (optional) components of ZK pipelines that are not being
tested. For example, as an alternative to the existing verifier, Gnark
allows generating a Solidity contract, which, when compiled and
deployed on the blockchain, could also be invoked to verify a gen-
erated proof. In this example, even bugs in the generated Solidity
contract, the Solidity compiler, or the Ethereum virtual machine
could compromise the correctness of the extended ZK pipeline. As
a next step, we plan to explore how to test such components.

https://github.com/Consensys/gnark/pull/1234
https://github.com/noir-lang/noir/issues/5463
https://github.com/AztecProtocol/aztec-packages/issues/8745

Fuzzing Processing Pipelines for Zero-Knowledge Circuits XYZ ’XX, June 03–05, 20XX, Woodstock, NY

Acknowledgments

We are grateful to the ZK-pipeline developers for their valuable help
and to the anonymous reviewers for their constructive feedback.
This work was supported by the Vienna Science and Technology
Fund (WWTF) and the City of Vienna [Grant ID: 10.47379/ICT22007]
as well as Maria Christakis’ ERC Starting grant 101076510.

References

[1] [n. d.]. Corset. https://github.com/Consensys/corset.
[2] [n. d.]. gnark: A Fast zk-SNARK Library that Offers a High-Level API to Design

Circuits. https://docs.gnark.consensys.io.
[3] [n. d.]. Noir. https://noir-lang.org.
[4] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rus-

tan M. Leino. 2005. Boogie: A Modular Reusable Verifier for Object-Oriented
Programs. In FMCO (LNCS, Vol. 4111). Springer, 364–387.

[5] Mike Barnett, Manuel Fähndrich, K. Rustan M. Leino, Peter Müller, Wolfram
Schulte, and Herman Venter. 2011. Specification and Verification: The Spec#
Experience. CACM 54 (2011), 81–91. Issue 6.

[6] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.
2015. The Oracle Problem in Software Testing: A Survey. TSE 41 (2015), 507–525.
Issue 5.

[7] Marta Bellés-Muñoz, Miguel Isabel, Jose Luis Muñoz-Tapia, Albert Rubio, and
Jordi Baylina Melé. 2023. Circom: A Circuit Description Language for Building
Zero-Knowledge Applications. Trans. Dependable Secur. Comput. 20 (2023), 4733–
4751. Issue 6.

[8] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. 1999.
Symbolic Model Checking Without BDDs. In TACAS (LNCS, Vol. 1579). Springer,
193–207.

[9] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
Based Greybox Fuzzing as Markov Chain. In CCS. ACM, 1032–1043.

[10] Alexandra Bugariu and Peter Müller. 2020. Automatically Testing String Solvers.
In ICSE. ACM, 1459–1470.

[11] Alexandra Bugariu, Valentin Wüstholz, Maria Christakis, and Peter Müller. 2018.
Automatically Testing Implementations of Numerical Abstract Domains. In ASE.
ACM, 768–778.

[12] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Na-
garakatte. 2010. A Randomized Scheduler with Probabilistic Guarantees of
Finding Bugs. In ASPLOS. ACM, 167–178.

[13] Stefanos Chaliasos, Jens Ernstberger, David Theodore, David Wong, Mohammad
Jahanara, and Benjamin Livshits. 2024. SoK: What Don’t We Know? Understand-
ing Security Vulnerabilities in SNARKs. In Security. USENIX.

[14] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan
Hao, and Lu Zhang. 2020. A Survey of Compiler Testing. Comput. Surv. 53 (2020),
4:1–4:36. Issue 1.

[15] Tsong Yueh Chen, S. C. Cheung, and Siu-Ming Yiu. 1998. Metamorphic Testing: A

New Approach for Generating Next Test Cases. Technical Report HKUST–CS98–01.
HKUST.

[16] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In POPL. ACM, 238–252.

[17] Jens Ernstberger, Stefanos Chaliasos, Liyi Zhou, Philipp Jovanovic, and Arthur
Gervais. 2024. Do You Need a Zero Knowledge Proof? Cryptol. ePrint Arch. (2024),
50.

[18] Karine Even-Mendoza, Arindam Sharma, Alastair F. Donaldson, and Cristian
Cadar. 2023. GrayC: Greybox Fuzzing of Compilers and Analysers for C. In ISSTA.
ACM, 1219–1231.

[19] Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3—Where Programs
Meet Provers. In ESOP (LNCS, Vol. 7792). Springer, 125–128.

[20] Markus Fleischmann, David Kaindlstorfer, Anastasia Isychev, Valentin Wüstholz,
andMaria Christakis. 2024. Constraint-Based Test Oracles for ProgramAnalyzers.
In ASE. ACM, 344–355.

[21] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated
Whitebox Fuzz Testing. In NDSS. The Internet Society, 151–166.

[22] Weigang He, Peng Di, Mengli Ming, Chengyu Zhang, Ting Su, Shijie Li, and Yulei
Sui. 2024. Finding and Understanding Defects in Static Analyzers by Constructing
Automated Oracles. PACMSE 1 (2024), 1656–1678. Issue FSE.

[23] Ahmed Irfan, Sorawee Porncharoenwase, Zvonimir Rakamaric, Neha Rungta, and
Emina Torlak. 2022. Testing Dafny (experience paper). In ISSTA. ACM, 556–567.

[24] David Kaindlstorfer, Anastasia Isychev, Valentin Wüstholz, and Maria Christakis.
2024. Interrogation Testing of Program Analyzers for Soundness and Precision
Issues. In ASE. ACM, 319–330.

[25] Timotej Kapus and Cristian Cadar. 2017. Automatic Testing of Symbolic Execution
Engines via Program Generation and Differential Testing. In ASE. IEEE Computer
Society, 590–600.

[26] Gary A. Kildall. 1973. A Unified Approach to Global Program Optimization. In
POPL. ACM, 194–206.

[27] Christian Klinger, Maria Christakis, and Valentin Wüstholz. 2019. Differentially
Testing Soundness and Precision of Program Analyzers. In ISSTA. ACM, 239–250.

[28] K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional
Correctness. In LPAR (LNCS, Vol. 6355). Springer, 348–370.

[29] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. CACM 52 (2009),
107–115. Issue 7.

[30] Muhammad Numair Mansur, Maria Christakis, Valentin Wüstholz, and Fuyuan
Zhang. 2020. Detecting Critical Bugs in SMT Solvers Using Blackbox Mutational
Fuzzing. In ESEC/FSE. ACM, 701–712.

[31] Muhammad Numair Mansur, Valentin Wüstholz, and Maria Christakis. 2023.
Dependency-Aware Metamorphic Testing of Datalog Engines. In ISSTA. ACM,
236–247.

[32] William M. McKeeman. 1998. Differential Testing for Software. Digital Technical
Journal 10 (1998), 100–107. Issue 1.

[33] Kenneth L. McMillan. 2018. Interpolation and Model Checking. In Handbook of

Model Checking. Springer, 421–446.
[34] JanMidtgaard andAndersMøller. 2017. QuickChecking Static Analysis Properties.

Softw. Test., Verif. Reliab. 27 (2017). Issue 6.
[35] Austin Mordahl, Zenong Zhang, Dakota Soles, and Shiyi Wei. 2023. ECSTATIC:

An Extensible Framework for Testing and Debugging Configurable Static Analy-
sis. In ICSE. IEEE Computer Society, 550–562.

[36] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016. Viper: A
Verification Infrastructure for Permission-based Reasoning. In VMCAI (LNCS,

Vol. 9583). Springer, 41–62.
[37] Jiwon Park, Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2021. Gen-

erative Type-Aware Mutation for Testing SMT Solvers. PACMPL 5 (2021), 1–19.
Issue OOPSLA.

[38] Sergio Segura, Gordon Fraser, Ana B. Sánchez, and Antonio Ruiz Cortés. 2016. A
Survey on Metamorphic Testing. TSE 42 (2016), 805–824. Issue 9.

[39] Jubi Taneja, Zhengyang Liu, and John Regehr. 2020. Testing Static Analyses for
Precision and Soundness. In CGO. ACM, 81–93.

[40] Hongbo Wen, Jon Stephens, Yanju Chen, Kostas Ferles, Shankara Pailoor, Kyle
Charbonnet, Isil Dillig, and Yu Feng. 2024. Practical Security Analysis of Zero-
Knowledge Proof Circuits. In Security. USENIX.

[41] Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2020. On the Unusual Ef-
fectiveness of Type-Aware Operator Mutations for Testing SMT Solvers. PACMPL

4 (2020), 193:1–193:25. Issue OOPSLA.
[42] Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2020. Validating SMT

Solvers via Semantic Fusion. In PLDI. ACM, 718–730.
[43] Dongwei Xiao, Zhibo Liu, Yiteng Peng, and Shuai Wang. 2025. MTZK: Testing

and Exploring Bugs in Zero-Knowledge (ZK) Compilers. In NDSS. The Internet
Society.

[44] Chengyu Zhang, Ting Su, Yichen Yan, Fuyuan Zhang, Geguang Pu, and Zhendong
Su. 2019. Finding and Understanding Bugs in Software Model Checkers. In
ESEC/FSE. ACM, 763–773.

[45] Huaien Zhang, Yu Pei, Junjie Chen, and Shin Hwei Tan. 2023. Statfier: Automated
Testing of Static Analyzers via Semantic-Preserving Program Transformations.
In ESEC/FSE. ACM, 237–249.

[46] Huaien Zhang, Yu Pei, Shuyun Liang, and Shin Hwei Tan. 2024. Under-
standing and Detecting Annotation-Induced Faults of Static Analyzers. CoRR
abs/2402.14366 (2024).

https://github.com/Consensys/corset
https://docs.gnark.consensys.io
https://noir-lang.org

XYZ ’XX, June 03–05, 20XX, Woodstock, NY Christoph Hochrainer, Anastasia Isychev, Valentin Wüstholz, and Maria Christakis

A Circuzz Rewrite Rules

Rule ID Match Pattern Rewrite Template

comm-or (?a | ?b) (?b | ?a)
assoc-and ((?a & ?b) & ?c) (?a & (?b & ?c))
comm-and (?a & ?b) (?b & ?a)
and-zero (?a & 0) 0
inv-xor (?a ^ ?a) 0

comm-xor (?a ^ ?b) (?b ^ ?a)
zero-or-rev (?a | 0) ?a
zero-xor-rev (?a ^ 0) ?a
inv-xor-rev 0 ($r ^ $r)
zero-or ?a (?a | 0)
zero-xor ?a (?a ^ 0)
idem-and ?a (?a & ?a)
zero-and 0 ($r & 0)
comm-add (?a + ?b) (?b + ?a)
comm-mul (?a * ?b) (?b * ?a)
comm-div (?a / ?b) ((1 / ?b) * ?a)

dist-mul-add ((?a + ?b) * ?c) ((?a * ?c) + (?b * ?c))
dist-add-mul ((?a * ?c) + (?b * ?c)) ((?a + ?b) * ?c)
assoc-add ((?a + ?b) + ?c) (?a + (?b + ?c))

assoc-add-rev (?a + (?b + ?c)) ((?a + ?b) + ?c)
assoc-mul ((?a * ?b) * ?c) (?a * (?b * ?c))

assoc-mul-rev (?a * (?b * ?c)) ((?a * ?b) * ?c)
assoc-div ((?a / ?b) * ?c) (?a * (?c / ?b))

assoc-div-rev (?a * (?c / ?b)) ((?a / ?b) * ?c)
zero-add-des (?a + 0) ?a
one-mul-des (?a * 1) ?a
one-div-des (?a / 1) ?a

inv-zero-add-des (?a - 0) ?a
neg-zero-add-des (0 - ?a) (-?a)

inv-add-des (?a - ?a) 0
inv-assoc-neg2pos ((?a - ?b) - ?c) (?a - (?b + ?c))
inv-assoc-pos2neg (?a - (?b + ?c)) ((?a - ?b) - ?c)
inv-addition-inl (?a + (-?c)) (?a - ?c)

double-negation-add-des (-(-?a)) ?a
pow2-to-mul (?a ** 2) (?a * ?a)
pow3-to-mul (?a ** 3) ((?a * ?a) * ?a)
mul-to-pow2 (?a * ?a) (?a ** 2)
mul-to-pow3 ((?a * ?a) * ?a) (?a ** 3)
zero-add-con ?a (?a + 0)
one-mul-con ?a (?a * 1)
one-div-con ?a (?a / 1)

inv-zero-add-con ?a (?a - 0)
neg-zero-add-con (-?a) (0 - ?a)
inv-addition-exp (?a - ?b) (?a + (-?b))

double-negation-add-con ?a (-(-?a))
add-sub-random-value ?a ((?a - $r) + $r)

inv-div-des (?a / ?a) 1
zero-lor-des (?a || 0) ?a
zero-land-des (?a && 1) ?a

taut-lor (?a || 1) 1
contra-land (?a && 0) 0

Fuzzing Processing Pipelines for Zero-Knowledge Circuits XYZ ’XX, June 03–05, 20XX, Woodstock, NY

Rule ID Match Pattern Rewrite Template

assoc-lor ((?a || ?b) || ?c) (?a || (?b || ?c))
assoc-land ((?a && ?b) && ?c) (?a && (?b && ?c))
comm-lor (?a || ?b) (?b || ?a)
comm-lan (?a && ?b) (?b && ?a)
dist-lor-land ((?a && ?b) || ?c) ((?a || ?c) && (?b || ?c))
dist-land-lor ((?a || ?c) && (?b || ?c)) ((?a && ?b) || ?c)

de-morgan-land-con (!(?a && ?b)) ((!?a) || (!?b))
de-morgan-land-des ((!?a) || (!?b)) (!(?a && ?b))
de-morgan-lor-con (!(?a || ?b)) ((!?a) && (!?b))
de-morgan-lor-des ((!?a) && (!?b)) (!(?a || ?b))
double-negation-des (!(!?a)) ?a
double-land-des (?a && ?a) ?a
double-lor-des (?a || ?a) ?a
double-lxor-des (?a ‘?a) 0
comm-lxor (?a ‘?b) (?b ‘?a)

lxor-to-or-and (?a ‘?b) (((!?a) && ?b) || (?a && (!?b)))
zero-lor-con ?a:bool (?a || 0)
zero-land-con ?a:bool (?a && 1)

double-negation-con ?a:bool (!(!?a))
double-land-con ?a:bool (?a && ?a)
double-lor-con ?a:bool (?a || ?a)
double-lxor-con 0:bool ($r:bool ‘$r:bool)
or-and-to-lxor (((!?a) && ?b) || (?a && (!?b))) (?a ‘?b)

commutativity-equ (?a == ?b) (?b == ?a)
relation-geq-to-leq (?a >= ?b) (?b <= ?a)
relation-leq-to-geq (?a <= ?b) (?b >= ?a)

relation-leq-to-lth-and-equ (?a <= ?b) ((?a < ?b) || (?a == ?b))
relation-lth-and-equ-to-leq ((?a < ?b) || (?a == ?b)) (?a <= ?b)
relation-geq-to-gth-and-equ (?a >= ?b) ((?a > ?b) || (?a == ?b))
relation-gth-and-equ-to-geq ((?a > ?b) || (?a == ?b)) (?a >= ?b)

relation-leq-to-not-gth (?a <= ?b) (!(?a > ?b))
relation-not-gth-to-leq (!(?a > ?b)) (?a <= ?b)
relation-geq-to-not-lth (?a >= ?b) (!(?a < ?b))
relation-not-lth-to-geq (!(?a < ?b)) (?a >= ?b)
relation-neq-to-not-equ (?a != ?b) (!(?a == ?b))
relation-not-equ-to-neq (!(?a == ?b)) (?a != ?b)

	Abstract
	1 Introduction
	2 Overview
	3 Approach
	3.1 Circuit Intermediate Language
	3.2 Circuit Generation
	3.3 Circuit Transformation
	3.4 Circuit Translation
	3.5 Input Generation
	3.6 Bug Detection
	3.7 Test-Throughput Optimizations

	4 Experimental Evaluation
	4.1 Zero-Knowledge Pipeline Selection
	4.2 Experimental Setup
	4.3 Experimental Results
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A Circuzz Rewrite Rules

