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Abstract

Over the last few years, smart-contract hacks have resulted in the
loss of billions of assets. To efficiently identify such vulnerabilities,
academic and industrial researchers have developed several pop-
ular smart-contract fuzzers. However, it has been challenging to
objectively compare their bug-finding effectiveness. In this paper,
we present Olympia, the first benchmark-generation tool that is
designed for smart-contract, rather than general-purpose, fuzzers.
We have used Olympia to evaluate the effectiveness of four well
known, open-source fuzzers for Solidity smart contracts.
Screencast: https://www.youtube.com/watch?v=DdADa2vcicA
Implementation: https://github.com/Rigorous-Software-Engineering/olympia

CCS Concepts

• Software and its engineering → Software testing and de-

bugging.
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1 Introduction

Fuzzing [14, 16, 23] has become a popular approach to find bugs
in many different systems, ranging from network protocols [18]
to reinforcement-learning agents [9] and smart contracts. Smart-
contract hacks have resulted in the loss of billions of assets [5].
For this reason, several popular fuzzers, such as Echidna [1, 10],
Foundry [2], and Harvey [21, 22], have been developed over the
last few years.

So far, it has been challenging to objectively compare the bug-
finding effectiveness of these fuzzers. This makes it difficult for
users to quickly identify one or more fuzzers for effectively testing
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smart contracts. It is also difficult for fuzzer developers to eval-
uate their fuzzing techniques against the state of the art. While
there are several fuzzer-benchmarking tools for general-purpose
programming languages, such as FuzzBench [15], Fuzzle [12], and
Magma [11], there are no similar tools for benchmarking smart-
contract fuzzers.

In this paper, we introduce the Olympia benchmarking tool to
easily, quickly, and reliably generate benchmarks for smart-contract
fuzzers. Each generated smart contract has a known bug, and differ-
ent fuzzers can be ranked by how quickly they are able to generate
an input that triggers the bug. Olympia reuses some parts of Fuz-
zle, an existing benchmarking tool for general-purpose fuzzers,
and builds on our experience with preliminary work [20].

Instead of generating C programs, like Fuzzle does, Olympia
generates Solidity smart contracts. Solidity [4] is the most pop-
ular programming language for smart contracts that run on the
Ethereum virtual machine (EVM). Due to differences in the exe-
cution environment between C and Solidity (e.g., related to the
use of gas metering for bounding the running time of individual
transactions), we encountered several challenges when adapting
Fuzzle’s benchmark-generation component to emit Solidity code
that is suitable for smart-contract fuzzers.We describe our approach
in addressing some of these challenges in Sect. 3.

Contributions. Overall, we make the following contributions:
• We present Olympia, the first benchmark-generation tool
for smart-contract fuzzers, which we make open source.

• We evaluate Olympia by comparing the bug-finding effec-
tiveness of four popular open-source fuzzers for Solidity
smart contracts.

2 Background on Fuzzle

Fuzzle is designed to benchmark fuzzers based on the insight that
finding a bug in a program resembles finding the exit in a maze.
It, therefore, generates buggy programs from randomly generated
mazes, such as the one shown in Fig. 1a. Each maze cell has a unique
identifier, and in the figure, cell 0 is the maze entry, and cell 3 exits
to a bug. Despite the small maze size, there are still infinitely many
paths to the bug, e.g., 0 – 2 – 0 – 1 – 3 – 1 – 3 – bug.

As a next step, Fuzzle uses this maze to generate a program
template, shown in Fig. 1b. A program template is a C program
with holes (depicted by the boxes in the figure). Each maze cell is
represented by a function definition, e.g., func_0 represents cell
0, etc. A path through the maze is represented by a sequence of
function calls, e.g., moving from cell 0 to 1 is represented by the call
to func_1 on line 6. The bug is reached and execution is aborted
when func_bug is called on line 13. Otherwise, execution terminates
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(a) Maze

1 void func_bug(signed char *inp , int idx , int l) {

2 abort ();

3 }

4 void func_0(signed char *inp , int idx , int l) {

5 // manipulate input

6 if ( ) func_1(inp , idx , l); // go to 1

7 else if ( ) func_2(inp , idx , l); // go to 2

8 else printf("no further steps possible");

9 }

10 // func_1 and func_2 definitions are analogous

11 void func_3(signed char *inp , int idx , int l) {

12 // manipulate input

13 if ( ) func_bug(inp , idx , l); // exit

14 else if ( ) func_1(inp , idx , l); // go to 1

15 else printf("no further steps possible");

16 }

17 // main is omitted

(b) Program

Figure 1: A maze and program generated by Fuzzle.

normally when all input is consumed. Function main, omitted in the
figure, simply calls themaze-entry function, func_0 , with the fuzzer-
generated input (inp), an index pointing to the non-consumed part
of the input (idx), and the input length (l).

Finally, Fuzzle fills the holes in the program template as follows.
(1) The conditions along valid paths through the maze are gener-
ated to be satisfiable using input-range or equality checks. The
conditions along a path to the bug may be additionally generated
using path constraints, obtained with symbolic execution [7], to
known CVEs—the idea is to make it as hard to reach the bug in
the maze as it is to detect a known CVE in the program where the
CVE was found. (2) Boxes like the ones on lines 5 and 12 check the
input length, assign input bytes to variables that are later used in
conditions, and update the input index.

3 Overview of Olympia

Olympia reuses the maze-generation component of Fuzzle, and
from the generated mazes, produces smart contracts. In the fol-
lowing, we discuss some of the challenges that we address when
translating mazes to Solidity contracts.

Solidity contract. From the maze of Fig. 1a, Olympia gener-
ates the (partial) Solidity contract shown in Fig. 2. As for C, each
function definition represents a maze cell, and the bug is reached
when func_bug (line 5) is called. The definition of func_bug , how-
ever, simply sets the persistent bug flag to true instead of aborting
execution. We explain how this flag is used by the Solidity fuzzers
later in this section.

1 contract Maze {

2 bool public bug = false;
3 bool private stop = false;
4 int64 next_cell = 0;

5 function func_bug(int8[] memory inp) internal {

6 bug = true;
7 }

8 function func_0(int8[] memory inp) internal {

9 // manipulate input

10 if ( ) next_cell = 1; // go to 1

11 else if ( ) next_cell = 2; // go to 2

12 else stop = true; // no further steps possible

13 }

14 // func_1 and func_2 definitions are analogous

15 function func_3(int8[] memory inp) internal {

16 // manipulate input

17 if ( ) next_cell = -1; // exit

18 else if ( ) next_cell = 1; // go to 1

19 else stop = true; // no further steps possible

20 }

21 function step(int8[] calldata inp) external {

22 require (!stop && !bug ,

23 "no further steps possible");

24 if (next_cell == -1) {

25 func_bug(inp);

26 return;
27 }

28 if (next_cell == 0) {

29 func_0(inp);

30 return;
31 }

32 // func_1 and func_2 calls are analogous

33 if (next_cell == 3) {

34 func_3(inp);

35 return;
36 }

37 }

38 }

Figure 2: Solidity contract generated by Olympia from the

maze of Fig. 1a.

In contrast to C, where main is the program entry point, in So-
lidity, any visible function may be called in any order. To avoid
that fuzzers start exploring the maze from any cell, our translation
ensures a single entry point. Specifically, we define function step

(line 21) as the only visible function of the contract. It uses persis-
tent variable next_cell to keep track of the next maze cell to enter.
Initially, next_cell is 0 (line 4), and consequently, func_0 is called
first (line 29). When next_cell has the special value -1, func_bug is
called (line 25). Each cell function, e.g., func_0 on line 8 and func_3

on line 15, updates next_cell accordingly.
Note that, to test the C program, fuzzers generate input for main,

which initiates an entire maze exploration from the maze entry
until either the exit is reached, all input is consumed, or no further
steps are possible. On the other hand, Solidity fuzzers typically
generate sequences of transactions (i.e., calls) to a contract under
test. Moreover, the running time of each transaction is bounded
using gas metering. For these reasons, Olympia generates a step

function that, in contrast to main, performs a single step from one
cell to the next. The Solidity fuzzers then need to generate sequences
of transactions, each calling step, to move through the maze. The
function requires the fuzzers to generate at least as much input as
is necessary to perform each step.
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1 contract TestMaze is Test {

2 Maze m;

3 function setUp() external { m = new Maze (); }

4 function invariant_no_bug () external {

5 if (m.bug()) { fail (); }

6 }

7 }

Figure 3: The Foundry test contract generated by Olympia.

Last, to fill the holes in the contract, Olympia uses the same
mechanisms as Fuzzle.

Fuzzer oracles. Recall that func_bug in the generated Solidity
code sets the flag bug to true instead of aborting execution, as the
C code does. We use this flag to signal to Solidity fuzzers that a bug
has been found; how exactly bug is used depends on each fuzzer.

For example, Echidna is a property-based testing tool and re-
quires that users specify properties under test in functions starting
with the prefix echidna_ . Echidna reports any such properties that
are violated during testing. Medusa and ItyFuzz are also com-
patible with properties defined for Echidna. To benchmark these
fuzzers with Olympia, we define the following property:
1 function echidna_no_bug () external
2 returns (bool) {

3 return !bug;

4 }

The above function appears at the end of the generated contract
Maze (Fig. 2).

In contrast, Foundry requires creating a test contract, such as
TestMaze shown in Fig. 3 (inheriting from the Foundry base con-
tract Test). The setUp function runs before any tests are executed.
In our case (line 3), it deploys the Maze contract of Fig. 2. Foundry
also allows expressing invariants, such as the one on line 4, which
should hold during a fuzzing campaign of the deployed contract(s).
Our invariant calls the Foundry-specific function fail, which fails
a test, when the bug flag of Maze is true. Note that we define bug

as public (line 2 of Fig. 2) to be able to use it in Foundry test
contracts—on line 5 of Fig. 3, we call its (automatically generated)
getter function bug().

Olympia generates both Echidna- and Foundry-targeted bench-
marks, which are then distributed accordingly to the fuzzers.

Type casts. Recall that Fuzzle and Olympia may generate con-
ditions along a path to a bug using path constraints derived from
known CVEs. These constraints are SMT formulas and may manip-
ulate bit-vectors by applying signed or zero extensions.

More specifically, a zero extension adds leading zeros to a given
bit-vector until the required size is reached. A signed extension, on
the other hand, interprets the given bit-vector as a signed integer
using two’s complement; if the first bit is zero, the integer is positive,
otherwise, it is negative. In the former case, a signed extension adds
leading zeros, and in the latter, it adds leading ones. For example,
Fuzzle translates to C a zero extension of an 8-bit vector by 24 bits
as (uint32_t)x, where x is the variable representing the bit-vector.
A signed extension is translated to (int32_t)x.

Solidity, however, does not allow changing the signedness of
a variable (i.e., from unsigned to signed and vice versa) while, at
the same time, changing the type size. In particular, for the above

example, if x is an int8 variable, we cannot translate the zero ex-
tension to uint32(x)—this changes both the signedness and size of
x. We, instead, need to apply an intermediate cast that changes the
signedness of the variable before changing the type size. Concretely,
the zero extension is translated to uint32(uint8(x)), whereas the
signed extension is translated to int32(x) since x is already signed.
Conversely, if x were a uint8, the zero extension would be trans-
lated to uint32(x) and the signed extension to int32(int8(x)).

4 Experimental Evaluation

For our experiments, we use Olympia to generate 50 Solidity bench-
marks for each of four different maze dimensions (5x5, 10x10, 15x15,
and 20x20); we, therefore, generate a total of 200 benchmarks. To
produce these benchmarks, all other Olympia parameters, which it
inherits from Fuzzle, for instance regarding condition-generation
strategies or maze-generation algorithms, are chosen randomly.

We benchmark four popular Solidity fuzzers, that is, Foundry [2],
Medusa [3], Echidna [1, 10], and ItyFuzz [19]. To each fuzzer, we
give a 60-minute timeout per benchmark.

We performed all experiments on a machine with two AMD
EPYC 9474F CPUs @ 3.60GHz and 1.5TB of memory, running De-
bian GNU/Linux 12 (bookworm).

Results. Fig. 4 shows the results of our experiments. More specif-
ically, the bar chart in Fig. 4a shows how many mazes each of the
four fuzzers was able to solve within the time limit—that is, in how
many generated contracts each fuzzer detected a bug. Unsurpris-
ingly, the fuzzers perform better for the smaller mazes and less well
for the larger ones. Overall, out of the 200 mazes, ItyFuzz solves 147,
Echidna 83, Medusa 58, and Foundry 31. ItyFuzz significantly
outperforms all other fuzzers on all maze dimensions.

The cactus plot in Fig. 4b shows the number of solved mazes
versus the time (in minutes) it took to solve each maze for all
fuzzers. ItyFuzz solves the mazes between 140.0msecs and 3.7mins,
Echidna between 6.1secs and 58.3mins, Medusa between 13.1secs
and 59.2mins, and Foundry between 12.5secs and 20mins.

Fig. 4c shows the intersection of mazes solved by the fuzzers;
ItyFuzz solves all mazes that the other fuzzers solve.

Olympia provides a fast, easy, and reliable platform for eval-
uating fuzzers for Solidity smart contracts. Results such as those
discussed above can help users make more informed choices regard-
ing which fuzzers to run for more effective bug finding; they can
also help fuzzer developers improve their techniques by comparing
against the state of the art.

5 Related Work

Here, we briefly present work related to fuzzer benchmarking. On
one hand, there are synthetic benchmarks, e.g., LAVA [8] and Fuz-
zle [12]. On the other hand, there are benchmarks based on real
programs, such as FuzzBench [15],Magma [11], andUNIFUZZ [13].
There are also benchmarks created for a competition of testing tools,
namely Test-COMP [6].

In contrast to benchmarks generated by Olympia, all of these
target general-purpose fuzzers. Although synthetic, Fuzzle and
Olympia’s benchmarks may approximate the difficulty of detecting
real bugs by incorporating CVEs. Moreover, unlike fixed sets of real-
world benchmarks, Olympia generates random benchmarks based
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Figure 4: Benchmarking Foundry, Medusa, Echidna, and

ItyFuzz using Olympia.

on several inputs, e.g., maze dimensions, condition-generation
strategies, maze-generation algorithms, etc., that it inherits from
Fuzzle. This helps in preventing fuzzer over-fitting to fixed bench-
mark sets [17].

6 Conclusion

In this paper, we have introduced Olympia, the first benchmark-
generation tool for smart-contract fuzzers. Olympia automatically
generates buggy smart contracts that can be used to objectively
compare the bug-finding effectiveness of different fuzzers. Olympia
is open source, and we have used it to evaluate the effectiveness of
four popular fuzzers for Solidity contracts.
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