
Automatically Testing
Implementations of Numerical Abstract Domains

Alexandra Bugariu
Department of Computer Science, ETH Zurich

Switzerland
alexandra.bugariu@inf.ethz.ch

Valentin Wüstholz
Department of Computer Science, ETH Zurich

Switzerland
wuestholz@gmail.com

Maria Christakis
MPI-SWS
Germany

maria@mpi-sws.org

Peter Müller
Department of Computer Science, ETH Zurich

Switzerland
peter.mueller@inf.ethz.ch

ABSTRACT
Static program analyses are routinely applied as the basis of code
optimizations and to detect safety and security issues in software
systems. For their results to be reliable, static analyses should be
sound (i.e., should not produce false negatives) and precise (i.e.,
should report a low number of false positives). Even though it is
possible to prove properties of the design of a static analysis, ensur-
ing soundness and precision for its implementation is challenging.
Complex algorithms and sophisticated optimizations make static
analyzers difficult to implement and test.

In this paper, we present an automatic technique to test, among
other properties, the soundness and precision of abstract domains,
the core of all static analyzers based on abstract interpretation. In
order to cover a wide range of test data and input states, we con-
struct inputs by applying sequences of abstract-domain operations
to representative domain elements, and vary the operations through
gray-box fuzzing. We use mathematical properties of abstract do-
mains as test oracles. Our experimental evaluation demonstrates
the effectiveness of our approach. We detected several previously
unknown soundness and precision errors in widely-used abstract
domains. Our experiments also show that our approach is more
effective than dynamic symbolic execution and than fuzzing the
test inputs directly.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

KEYWORDS
soundness testing, precision testing, abstract interpretation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3240464

ACM Reference Format:
Alexandra Bugariu, Valentin Wüstholz, Maria Christakis, and Peter Müller.
2018. Automatically Testing Implementations of Numerical Abstract Do-
mains. In Proceedings of the 2018 33rd ACM/IEEE International Conference on
Automated Software Engineering (ASE ’18), September 3–7, 2018, Montpellier,
France. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3238147.
3240464

1 INTRODUCTION
Static program analyses compute semantic properties of programs,
which are the basis for program optimizations and for detecting
program errors and security vulnerabilities. Since most proper-
ties of programs are undecidable, static analyses approximate the
set of possible program behaviors. For its results to be reliable,
a static analysis should be sound and precise. A sound analysis
considers each possible program behavior, that is, computes an
over-approximation of all possible behaviors. Consequently, sound
analyses do not produce false negatives. A precise analysis computes
a tight approximation to minimize the number of false positives.

Many static analyses are based on the abstract-interpretation
framework [20]. In this framework, abstractions of the program
state are represented by elements of abstract domains; for instance,
numerical abstract domains may track intervals of possible values
for numerical variables or constraints between them. The seman-
tics of program operations is represented by abstract transformers,
which specify the effect of an operation on the abstract state.

Even though it is possible to prove properties of the design of a
static analysis, ensuring soundness and precision for its implemen-
tation is challenging. In fact, implementations of abstract domains
are often complex and highly optimized in order to maximize perfor-
mance and scalability [46]. Errors in these implementations likely
affect the usefulness of all static analyzers that build on them.

Imagine a static analysis that abstracts numerical variables to
intervals of possible values. For instance, the abstract value [0, 5] for
an integer variable x expresses that, in each program execution, the
concrete (actual) value of x satisfies 0 ≤ x ≤ 5. The example in Fig. 1
illustrates a potential soundness error due to arithmetic overflow.
Without prior knowledge about parameter p, its abstract value
is [INT_MIN , INT_MAX], and consequently, the abstract value of
a after the assignment is [INT_MIN + 1, INT_MAX + 1]. If this
abstract domain is implemented using bounded integers, a naive
implementation of the addition operator will lead to an overflow and

https://doi.org/10.1145/3238147.3240464
https://doi.org/10.1145/3238147.3240464
https://doi.org/10.1145/3238147.3240464

ASE ’18, September 3–7, 2018, Montpellier, France A. Bugariu, V. Wüstholz, M. Christakis, and P. Müller

int foo(int p) {

int a := p + 1;

...

}

Figure 1: Potential soundness error due to overflow.

produce [INT_MIN + 1, INT_MIN]. This empty interval indicates
that the code after the assignment is unreachable, which is unsound.
In particular, this unsound result might mask program errors and
security vulnerabilities in subsequent code.

In this paper, we assess the effectiveness of existing automatic
testing techniques in finding, among other errors, soundness and
precision issues in widely-used implementations of abstract do-
mains.We generate test inputs using a novel combination of existing
ideas: starting from a pool of pre-selected values, we apply abstract-
domain operations to create representative domain elements, and
vary the operations by employing an off-the-shelf gray-box fuzzer,
such as AFL [7] or LibFuzzer [6], to maximize coverage. As in earlier
work byMidtgaard andMøller [40], we use mathematical properties
of abstract domains as test oracles. However, we target real-world
implementations of complex abstract domains (e.g., APRON’s Oc-
tagons domain [41] and ELINA’s Polyhedra domain [46]), and we
extend the set of tested properties by including more precision
properties and by approximating termination properties.

Our evaluation on several abstract domains of the APRON [31]
and ELINA [46] libraries shows that our combination effectively
detects soundness and precision problems in complex, mature im-
plementations. In particular, we show that it is more effective than
purely relying on existing test case generation techniques, such
as gray-box fuzzing and dynamic symbolic execution (DSE, also
known as concolic testing) [14, 28].

Our main contributions are the following:
(1) We present a novel combination of automatic test case gen-

eration techniques to detect, among other errors, soundness
and precision issues in implementations of abstract domains.

(2) We demonstrate that our technique effectively finds both
seeded and real errors in widely-used implementations of
numerical abstract domains.

(3) We show that our technique tests abstract domains more
effectively than standard DSE or gray-box fuzzing.

Our experience is useful for developers of abstract domains to
ensure soundness and precision of their implementations. It is
also useful for developers of static analyzers to assess the quality
of available abstract-domain libraries. Even if the design of an
abstract domain intentionally sacrifices soundness in favor of other
qualities [16, 37], it is still important to check the implementation
for unintentional unsoundness caused by implementation errors.

Outline. The next section summarizes some background on ab-
stract interpreters. Sect. 3 gives an overview of our approach, and
Sect. 4 explains the technical details. In Sect. 5, we present our
experimental evaluation on real-world implementations of abstract
domains. We discuss related work in Sect. 6 and conclude in Sect. 7.

2 BACKGROUND
Abstract interpretation [20] is a theoretical framework for express-
ing static analyses, used by many industrial analyzers, such as

Astrée [12] and Clousot [26]. It relies on abstract domains to rep-
resent abstractions of concrete program states, and on abstract
transformers to model the behavior of program instructions, such
as assignments and conditionals.

Abstract domains are often reused acrossmany different program
analyses. For example, most static analyzers employ numerical
domains, which are, therefore, the focus of this paper. Widely-used
numerical domains include Intervals [19], which capture the range
of values for each variable, Octagons [41], which can also express
simple relations between two variables, Polyhedra [23], which can
capture linear inequalities between arbitrarily many variables, and
Zonotopes [29], which express affine relations.

Most abstract domains are represented by complete lattices of the
form

(
Ā, ⊑, ⊥, ⊤, ⊔, ⊓

)
. Ā denotes the set of abstract elements x̄ ,

which are partially ordered by inclusion ⊑. Each abstract element
represents a set of constraints, i.e., mathematical relations between
variables and constants. The bottom element ⊥ is the least element
of the lattice; it represents the empty set of concrete states and
corresponds to an unsatisfiable set of constraints. The top element
⊤ is the greatest element and represents the universal set of concrete
states; that is, all variables are unconstrained.

⊔ and ⊓ are the join and meet operators, which are used to
obtain the union, respectively the intersection, of two abstract
elements. Additionally, an abstract domain whose lattice has an
infinite height requires a widening operator (▽) to ensure that the
analysis eventually reaches a fixed point. Some domains (such as
Intervals and Octagons) also support a narrowing operator (△),
which can improve the precision of the analysis [22].

Abstract transformers are typically specific to a given analysis
and programming language, but some transformers are universal
building blocks for many analyses. These include assign to represent
an assignment, cond to assume a condition to hold, and project
to eliminate any previous information about one of the variables
(e.g., when a new value of a variable is read from a file). Here, we
focus on these transformers because they are the most complex to
implement [47] (and thus the most error prone). A generalization
of our approach to other transformers is mostly straightforward.

3 OVERVIEW
Since implementations of abstract domains are often used as li-
braries by many different program analyses, we apply a unit testing
approach. Compared to system testing, unit testing allows us to
specify generic test oracles, which are independent of a specific
abstract domain or static analysis. Moreover, it facilitates the genera-
tion of test data because abstract-domain elements can be generated
much more easily than input programs for a whole analyzer [40]. In
this section, we give an overview of the three main ingredients of
our automatic unit test approach: test oracles, test input generation,
and test drivers. Details will be presented in Sect. 4.

3.1 Test Oracles
The abstract interpretation framework prescribes a number of prop-
erties of the domain operators and abstract transformers (collec-
tively referred to as domain operations in the rest of the paper),
which are required for soundness. For instance, if the abstract el-
ement x̄ (capturing the pre-state of an assignment) is reachable

Automatically Testing Implementations of Numerical Abstract Domains ASE ’18, September 3–7, 2018, Montpellier, France

(that is, different from bottom), the post-state of the assignment
v := e should also be non-bottom for all variablesv andwell-formed
expressions e:

x̄ ,⊥⇒ assign(x̄ ,v, e) ,⊥ (a)

We use these general soundness conditions as test oracles. We also
identify a number of general precision conditions, whose violation
indicates that the result of a domain operation is over-approximated
more than necessary. For this purpose, we compare the result of a
domain operation to the best transformer, that is, the most precise
result representable in a given abstract domain. For instance, the
result of intersecting top with an element should be equal to the
element itself:

⊤ ⊓ x̄ = x̄ (b)

Moreover, we check that widening and narrowing converge within
a given number of iterations, which ensures the termination of any
fixed-point computation in which they are used.

Note that all the properties considered in this paper are defined
under the assumption that the analyzed programs do not raise
exceptions, otherwise the behavior of the static analyzer depends
on the semantics of the programming language. For example in C,
division by zero causes undefined behavior. When classifying the
properties into soundness and precision (as described in Sect. 4),
we assume that the abstract domain does not model error states.

3.2 Input Data
Abstract domains often use sophisticated data structures to op-
timize performance. For instance, elements of the Polyhedra do-
main are typically represented using both matrices and vectors
of floating-point numbers. In our experiments, we observed that
the standard test case generation techniques do not work well for
complex abstract domains. In particular, fuzzing failed to detect
subtle interactions between domain operations, and DSE did not
effectively explore real-world implementations that make heavy
use of floating-point arithmetic and libraries. We, therefore, use a
combination of test case generation techniques to create a pool of
domain elements, which serve as test inputs to domain operations.
The pool is populated in two steps.

Step 1 creates an initial pool by combining boundary and random
testing. Each element of a numerical domain can be constructed
from numerical constraints. For instance, an element of the Inter-
vals domain, which maps program variables vi to their possible
ranges, is created from the constraint kl ≤ vi ≤ ku (the constants
kl and ku are the lower and upper bounds). We generate the nu-
merical constants randomly or choose them from a pre-defined set
of boundary values that are more likely to expose bugs, such as
off-by-one errors and arithmetic overflows. If the Intervals domain
is implemented using machine integers, these boundary values
are {INT_MIN , 0, INT_MAX }. The initial pool also contains the
extreme elements ⊤ and ⊥.

Selecting inputs from this pool (together with a suitable expres-
sion e) as arguments to the assign transformer will likely detect the
possible unsoundness illustrated in Fig. 1. The initial pool is likely
to contain an element mapping the variable p to [0, INT_MAX]
since 0 and INT_MAX are pre-defined boundary values; moreover,
we are likely to obtain an expression e of the from p+k for a positive

constant k (see Sect. 4 for details). Evaluating the assign transformer
on these inputs violates soundness property (a) defined above.

The initial pool allows us to test individual domain operations.
However, this approach is insufficient in two situations. First, some
implementations rely on complex consistency conditions on their
data structures. For Polyhedra, for instance, the two internal rep-
resentations must be kept consistent. If a faulty operation violates
this invariant, the effect can be often observed only when applying
a subsequent operation; it is thus necessary to perform at least two
consecutive operations to detect the bug.

Second, there are certain soundness or precision properties of
individual operations that cannot be checked by generic, domain-
independent oracles. For instance, the assign transformer for Oc-
tagons should, in some cases, apply a so-called closure operation;
failing to do so or using an imprecise closure may lead to loss of
precision in subsequent operations, such as inclusion or equality
tests [41]. A test oracle that directly detects a missing closure would
be specific to Octagons and, thus, not reusable. A more generic way
to detect this problem is by intersecting the result of the assign
transformer with top. The expected output of the intersection is
the same as the result of the assign transformer itself. However,
if the transformer does not apply the closure when expected, the
domain-independent property (b) may fail due to imprecision.

The above situations can both be tested by executing at least two
consecutive domain operations before checking the oracle. There-
fore, step 2 of our input generation expands the pool of domain
elements by iteratively applying a domain operation to existing
pool elements (and possibly other arguments) and adding the result
to the pool. By repeating this process, we increase the likelihood of
constructing elements that need to be built incrementally with sev-
eral domain operations. As a result, we are also more likely to detect
bugs that manifest themselves only in consecutive operations.

3.3 Test Drivers and Exploration
For each property under test, we manually write a test driver that is
parametric in: (1) the operations and their arguments used in step 2
to populate the pool of domain elements, and (2) the arguments of
the property under test.

Fig. 2 shows, in pseudo code, our test driver for checking sound-
ness property (a) for the assign transformer. The driver takes as
arguments a sequence of operations (ops), which are used in step 2
of the pool creation, a sequence of indices into the pool (elems),
a sequence of expressions (exprs), and a sequence of program
variables (vars). The latter three provide arguments to the do-
main operations. The driver also takes as arguments an index into
the pool (oelem), an expression (oexpr), and a variable (ovar),
which are inputs to the property under test (or oracle) (lines 17–21).

The test driver initializes the pool of abstract elements by creat-
ing valid inputs for the currently tested domain, such as Intervals
or Octagons (step 1, line 4). Then, it extends the pool by applying
domain operations (step 2, lines 7–14). Each iteration obtains the
next operation and its arguments from the parameters of the test
driver, applies it, and adds the result to the pool. Finally, the test
driver asserts property (a) after computing the result of the assign
operation. For simplicity, we omit optimizations (for instance, our
implementation initializes the pool only once, before all the drivers

ASE ’18, September 3–7, 2018, Montpellier, France A. Bugariu, V. Wüstholz, M. Christakis, and P. Müller

1 test_assign(ops , elems , exprs , vars ,

2 oelem , oexpr , ovar) {

3 // populate pool , step 1

4 pool := init ();

5

6 // populate pool , step 2

7 for(i := 0; i < nbops; i++) {

8 op := ops[i];

9 x := pool[elems[i]];

10 y := pool[elems[nbops + i];

11 e := exprs[i];

12 v := vars[i];

13 add_to_pool(pool , apply(op, x, y, e, v));

14 }

15

16 // execute assign transformer

17 x := pool[oelem]

18 res := apply(assign_op , x, ovar , oexpr);

19

20 // check property (a)

21 assert x , ⊥ ⇒ res , ⊥;

22 }

Figure 2: Pseudo code of a test driver for checking soundness
property (a) of the assignment transformer.

are run) and several technicalities, such as ensuring that indices
are within bounds.

We use the state-of-the-art gray-box fuzzer LibFuzzer [6] to pro-
vide the arguments to the test driver, i.e., to choose the operations
used in step 2 together with their arguments, and the parameters
for the property under test. Gray-box fuzzers use a lightweight
code instrumentation to generate inputs that are likely to execute
previously uncovered code. In our implementation, all parameters
of the test driver are encoded into one array, which is created by
the fuzzer.

4 TECHNICAL SOLUTION
In this section, we provide the technical details of our approach.

4.1 Test Oracles
Our test oracles are based on domain-independent mathematical
properties of abstract operations. In the following, we give an
overview of these properties and explain how they are checked by
the test drivers.

Properties. Based on the abstract-interpretation literature [20, 21]
and earlier work on testing static analyzers [40], we identified 46
properties that need to be satisfied by domain operations to ensure
soundness, precision, and termination. Fig. 3 provides an overview.

The soundness properties are required to ensure that an abstract-
domain element over-approximates the concrete states it represents.
We have discussed an example in the previous section (property 35).

To deal with the undecidability of most semantic program prop-
erties, static analyses over-approximate the set of concrete program
behaviors and then infer or check properties on this abstraction.
Since they are intended to compute an approximation, one cannot
expect the operations of an abstract domain to be precise w.r.t. the
concrete program execution. Therefore, our precision properties
check that the domain operations do not lead to unnecessary infor-
mation loss, that is, they compare the result of an operation to the

Partial order Join/Meet bounds
1 ⊥ ⊑ x̄ [P] 27 ∀b̄ : (x̄ ⊑ b̄) ∧ (ȳ ⊑ b̄)
2 x̄ ⊑ ⊤ [P] ⇒ (x̄ ⊔ ȳ ⊑ b̄) [P]
3 x̄ ⊑ x̄ [P] 28 ∀b̄ : (b̄ ⊑ x̄) ∧ (b̄ ⊑ ȳ)
4 x̄ ⊑ ȳ ∧ ȳ ⊑ z̄ ⇒ x̄ ⊑ z̄ [P] ⇒ (b̄ ⊑ x̄ ⊓ ȳ) [P]
5 x̄ ⊑ ȳ ∧ ȳ ⊑ x̄ ⇒ x̄ = ȳ [P] Widening

Join 29 x̄ ⊑ x̄ ▽ ȳ [S]
6 ⊥ ⊔ x̄ = x̄ [P] 30 ȳ ⊑ x̄ ▽ ȳ [S]
7 ⊤ ⊔ x̄ = ⊤ [S] 31 x̄ ▽ ⊥ = x̄ [P]
8 x̄ ⊑ x̄ ⊔ ȳ [S] 32 ⊥ ▽ x̄ = x̄ [P]
9 ȳ ⊑ x̄ ⊔ ȳ [S] 33 widening converges [C]
10 x̄ ⊔ ȳ = ȳ ⊔ x̄ [P] Assignment [a = assign]
11 (x̄ ⊔ ȳ) ⊔ z̄ = x̄ ⊔ (ȳ ⊔ z̄) [P] 34 x̄ ⊑ ȳ
12 x̄ ⊔ x̄ = x̄ [P] ⇒ a(x̄, v, e) ⊑ a(ȳ, v, e) [P]
13 x̄ ⊑ ȳ ⇒ x̄ ⊔ ȳ = ȳ [P] 35 x̄ ,⊥⇒ a(x̄, v, e) ,⊥ [S]
14 x̄ ⊔ ȳ = ȳ ⇒ x̄ ⊑ ȳ [P] 36 x̄ =⊥⇒ a(x̄, v, e) =⊥ [P]
15 x̄ ⊔ (x̄ ⊓ ȳ) = x̄ [P] 37 rep(e, x̄) ⇒ a(x̄, v, e) , ⊤ [P]

Meet Projection [p = project]
16 ⊥ ⊓ x̄ = ⊥ [P] 38 a(x̄, v, e) ⊑ p(x̄, v) [P]
17 ⊤ ⊓ x̄ = x̄ [P] Conditional [c = cond]
18 x̄ ⊓ ȳ ⊑ x̄ [P] 39 x̄ ⊑ ȳ ⇒ c(x̄, e) ⊑ c(ȳ, e) [P]
19 x̄ ⊓ ȳ ⊑ ȳ [P] 40 x̄ =⊥⇒ c(x̄, e) =⊥ [P]
20 x̄ ⊓ ȳ = ȳ ⊓ x̄ [P] 41 c(x̄, e) ⊑ x̄ [P]
21 (x̄ ⊓ ȳ) ⊓ z̄ = x̄ ⊓ (ȳ ⊓ z̄) [P] Narrowing
22 x̄ ⊓ x̄ = x̄ [P] 42 x̄ ⊓ ȳ ⊑ x̄ △ ȳ [P]
23 x̄ ⊑ ȳ ⇒ x̄ ⊓ ȳ = x̄ [P] 43 x̄ △ ȳ ⊑ x̄ [P]
24 x̄ ⊓ ȳ = x̄ ⇒ x̄ ⊑ ȳ [P] 44 x̄ △ ⊥ = ⊥ [P]
25 x̄ ⊓ (x̄ ⊔ ȳ) = x̄ [P] 45 ⊥ △ x̄ = ⊥ [P]
26 disj(x̄, ȳ) ⇒ x̄ ⊓ ȳ = ⊥ [P] 46 narrowing converges [C]

Figure 3: Algebraic properties of abstract domains. We clas-
sify them into soundness [S], precision [P], or convergence
[C]. Note that all free variables are implicitly universally
quantified and all variables refer to abstract-domain ele-
ments except for variablesv and e, which refer to a program
variable and an expression, respectively. Predicate disj(x̄ , ȳ)
denotes that the intersection of the set of constraints from
x̄ and ȳ is trivially empty, and predicate rep(e, x̄) that e can be
precisely represented in the abstract domain of x̄ .

most precise representable result as obtained by applying the best
transformer (see Sect. 3).

For instance, computing the join of two intervals [1, 1] and [3, 3]
yields [1, 3], which loses the information that the variable is differ-
ent from 2. Despite this inevitable information loss, a join operator
should satisfy a number of precision properties (6, 10–13, 15); for
instance, property 13 prevents the join of [1, 1] and [1, 3] from
returning [0, 4] or ⊤, which is sound, but unnecessarily imprecise.

The soundness and convergence properties need to hold for all
abstract domains; some precision properties may not always hold
when the best transformers do not exist or cannot be computed [43].
For instance, domains based on incomplete lattices (such as Zono-
topes) do not have a least upper bound for every pair of abstract
elements. This can force ⊔ to return a larger upper bound and, thus,
violate property 27. For such domains, we require developers to
select the subset of precision properties that should be checked.

The convergence properties (33 and 46) require widening and
narrowing to eventually reach a fixed point, which is necessary to
ensure that the static analysis of loops and recursion terminates.
Since convergence is a termination property, which cannot be tested,
we instead check the stronger property that a fixed point is reached
within a given number of iterations, as we explain below.

Executable oracles. We manually construct a test driver for each
of the properties in Fig. 3. This driver selects suitable inputs for

Automatically Testing Implementations of Numerical Abstract Domains ASE ’18, September 3–7, 2018, Montpellier, France

1 i := 0;

2 x := pool[oelems[i]];

3 while (true) {

4 i := i + 1;

5 y := pool[oelems[i]];

6 res := apply(widening_op , x, y);

7 if (res == x)

8 break; // a fixed point is reached

9 x := res;

10 assert i < k;

11 }

Figure 4: Fragment of a test driver for checking whether the
Octagons widening reaches a fixed point within k steps.

each of the free variables of the property to be tested, evaluates
the property, and checks that it holds. For instance, for property 3,
it selects a domain element d for variable x̄ and checks that the ⊑
operator yields true when applied to d and d .

Translating properties into executable oracles is straightforward
for most soundness and precision properties, but slightly more in-
volved for convergence properties. Fig. 4 shows a fragment of our
test driver for checking whether the Octagons widening converges
after k iterations [41]. The driver computes an increasing chain of
x elements (as checked by property 29), each obtained by widen-
ing the previous element with an arbitrary element y. Widening
converges if the x-chain becomes stable, here, within k steps. We
observed that k = 100 is a sufficient upper bound for all our tested
analyzers, because widening converges much faster in practice.

Note that, for most abstract domains (such as Intervals, Octagons,
etc.), widening can be applied to arbitrary elements. There are,
however, some exceptions; for instance, the Polyhedra widening
requires monotonicity of its operands (that is, x ⊑ y). In such cases,
we use a slightly different test driver that applies widening on x
and the join of x and y; that is, by changing the last parameter of
apply on line 6 of Fig. 4 to x⊔y, because x ⊑ x⊔y (see property 8).
As a consequence of this monotonicity precondition, property 31
needs to hold for the Polyhedra domain only for x̄ = ⊥.

4.2 Input Data
Testing the properties from Fig. 3 requires three kinds of input data:
(1) program variables, (2) expressions over them (for the assign and
cond transformers), and (3) abstract-domain elements that contain
constraints over these variables. We construct this data as follows.

Program variables. All our test cases operate on a set of pre-
defined integer variables. The number of variables must be suffi-
ciently small to keep the memory consumption and execution time
of the test cases low. On the other hand, abstract-domain optimiza-
tions, such as decomposition, require enough variables to obtain
non-trivial partitions [46]. In our implementation, the number of
variables is configurable; we use eight variables in our experiments.

Expressions. Testing assignments requires numerical expressions.
For the numerical domains considered in this paper, these expres-
sions are linear sums over the program variables with integer coef-
ficients, which are chosen by the fuzzer to increase the likelihood
of constructing suitable expressions. Note that, to test precision
properties, we also need to generate expressions that are not rep-
resentable in the domain under test. For instance, for an octagon

Table 1: Structure of abstract elements with one constraint
for commonly used numerical domains.

Domain Element with one constraint

Intervals {kl ≤ vi ≤ ku }

Zonotopes {vi =
kl +ku

2 +
ku−kl

2 ∗ εi }

Octagons {civi + c jvj ⊙ k }

Polyhedra {c0v0 + c1v1 + ...cdim−1vdim−1 ⊙ k }

v : variables, c : coefficients, ε ∈ [−1, 1], k : constants, ⊙ ∈ {≥, =}

{v0 ≥ 0 ∧ v1 ≥ 0}, the assignment v2 := v0 + 2v1 is expected to
produce {v0 ≥ 0 ∧v1 ≥ 0 ∧v2 ≥ 0} (and not ⊤), even though the
assigned expression is not octagonal. For the cond transformer, we
obtain boolean expressions by comparing the linear sums to zero.

Domain elements. As explained in Sect. 3, we create a pool of
abstract-domain elements (such as intervals or octagons) in two
steps: Step 1 populates the pool by constructing elements using
a combination of boundary and random testing, whereas step 2
expands it by applying domain operations to existing pool elements.

Besides⊤ and⊥, step 1 also creates simple domain elements that
contain only one constraint on the pre-defined program variables.
More complex domain elements are constructed in step 2. Tab. 1
shows the structure of simple domain elements for common nu-
merical domains. These elements can be constructed by choosing
values for the constants k (e.g., the bounds of an interval) and the
coefficients c . By default, we pick them from a small set of pre-
defined values (e.g., boundary values such as 0 or∞) and a small set
of arbitrary values. The use of pre-defined values is optional and
can be configured in the test drivers (see Sect. 5).

These sets of values depend on both the domain under test and
its implementation. For instance, octagonal coefficients must be in
{−1, 0, 1}, whereas polyhedral ones are arbitrary integers. Moreover,
different implementations represent numbers differently; e.g., we
use the pre-defined values {INT_MIN , 0, INT_MAX } for integer
intervals if the implementation uses machine integers, {−∞, 0,∞}

for arbitrary-precision integers, and additionally NaN for floating-
point representations. Even though we focus on integer program
variables here, internal floating-point computations may lead to
rounding errors, as we observed in our experiments (see Sect. 5).

The values in both sets are not chosen by the fuzzer. However,
the fuzzer can still control the pool of domain elements by selecting
suitable operations in step 2. This step constructs more diverse
domain elements, usually with more complex constraints, by ap-
plying domain operations to the existing elements. Step 2 makes
use of all domain operators that yield domain elements (⊔, ⊓, ▽) as
well as the abstract transformers assign and project. For simplicity,
we omit narrowing, which is not supported by all domains, and
conditionals. Using all these domain operations not only allows
us to detect errors in their implementation (such as the missing
closure in assignments that we discussed in Sect. 3), but it also
efficiently generates a diverse set of valid domain elements. While
it is theoretically possible to create a new element by generating
an arbitrary set of constraints, such an approach would often pro-
duce unsatisfiable conjunctions of constraints, represented by the
already considered ⊥ element.

ASE ’18, September 3–7, 2018, Montpellier, France A. Bugariu, V. Wüstholz, M. Christakis, and P. Müller

5 EXPERIMENTAL EVALUATION
To evaluate the effectiveness of our approach, we apply it to two
complex libraries for numerical analysis, namely APRON [31] and
ELINA [46]. We were able to find errors in several of the imple-
mented domains. Most of them are already confirmed and fixed.

APRON is a mature library, extensively used in many academic
and industrial static analyzers, such as Astrée [12] and PAGAI [30],
as well as in the CPAchecker verification platform [11]. ELINA
is a recent library that uses highly-optimized algorithms based
on online decomposition to achieve significant speedups [46, 47].
These algorithms are difficult to implement correctly.

In our experiments, we consider three variants of APRON with
different internal representations for numerical values (Sects. 5.1
and 5.2), and two versions of ELINA (Sect. 5.3). We also evaluate
different configurations of our technique (Sect. 5.4), and compare it
to pure fuzzing and DSE (Sect. 5.5).

Experimental setup. Since the tested domains have different
complexity (i.e., the implementation of Polyhedra is significantly
slower), we estimated the maximum execution time required to
test each property approximately one million times for Intervals,
Zonotopes, and Octagons, and half a million times for Polyhedra
(see Tab. 2). The values are smaller for ELINA than for APRON
because ELINA’s code is highly optimized. Intervals and Zonotopes
were not considered for ELINA, as they were not part of the tested
artifacts [3, 4]. All the experiments were performed on a 3.3 GHz
Intel Xeon E5-4627 v2 CPU with 236 GB memory and RAID6 HDD.

5.1 APRON Double and Rll
APRON supports different internal representations for numerical
values. For instance, the Double representation uses floating-point
numbers, while Rll uses an approximation of rational numbers
based on two 64-bit integers for the numerator and denominator.
Compared to APRONMPQ,which uses arbitrary-precision rationals
(see Sect. 5.2), these representations offer better performance, but
may lose precision and cause non-termination [1]. Intervals and
Octagons support Double, while Rll is available for Polyhedra.

Our experiments indeed uncovered soundness, precision, and
termination problems in several domains of the latest version of
APRON (0.9.10), as shown in Tab. 3. Here, the three versions of Rll
refer to different test configurations that we discuss later; the do-
main implementation is always the same. The third column presents
the total number of properties from Fig. 3 that we attempted to
test for each domain. We tested only the first 41 properties for
Intervals and Polyhedra since narrowing is not implemented for
Intervals in APRON and not mathematically defined for Polyhedra.
The reported violations in the fourth column are not necessarily
all caused by different bugs. Nevertheless, observing multiple vio-
lations caused by the same bug can provide additional information

Table 2: Maximum execution time per test driver.

Domain Maximum execution time (s)
APRON ELINA

Intervals 750 not considered
Zonotopes 2’400 not considered
Octagons 1’900 700
Polyhedra 17’700 1’800

Table 3: Results for APRON Double and Rll. The third col-
umn reports howmany of the properties fromFig. 3were ap-
plicable for each tested domain. The first value in the fourth
column shows the number of violated soundness properties,
the second represents precision properties, and the third
indicates how often errors in the domain implementation
caused the test driver to crash or time out.

Variant Domain #Properties CausesTested Violated
Double Intervals 41 0 / 0 / 0 –
Double Octagons 46 0 / 3 / 0 rounding
Rll v1 Polyhedra 41 0 / 0 / 41 overflow
Rll v2 Polyhedra 41 5 / 15 / 21 overflow
Rll v3 Polyhedra 41 5 / 19 / 4 overflow

for error localization. We used a configuration that initializes the
pool with 32 elements (step 1 of the pool population), includes
LONG_MIN and LONG_MAX as boundary values, and applies 16
operations to generate more complex domain elements (step 2).
This corresponds to configuration C2 from Tab. 6, which we discuss
in Sect. 5.4, together with measurements on the testing time.

Intervals and Octagons. All our generic properties hold for In-
tervals, the simplest domain we tested. Nonetheless, we indirectly
found imprecisions for ⊑ and ⊔, by testing APRON’s efficient im-
plementation of Zonotopes [27] (discussed in Sect. 5.2), which uses
the Interval operations. These issues were confirmed and fixed.

For Octagons, three precision properties (17, 22, and 23) are
violated because the equality test gives imprecise results due to
rounding errors. In Fig. 5, we show an example input generated
by our approach that violates property 17. oct represents a call to
the Octagons constructor. The root cause of the imprecision is the
underlying double representation. For oct3 , LONG_MAX cannot be
precisely represented as a double value. The resulting rounding
error gives approximate results in the subsequent computations
and makes the assertion on line 5 fail.

Polyhedra.With the same test configuration (C2), all the tests fail
to terminate for Polyhedra Rll (Rll v1 in Tab. 3). The problem is that
APRON enters infinite loops during step 1 of the pool construction
because of unhandled arithmetic overflows. The bug can be seen
when constructing at least two consecutive domain elements, as in
Fig. 6. The second constructor call enters an infinite loop.

This bug causes all test drivers to time out before they even
reach the test oracle. To work around it and look for additional
bugs, we replaced LONG_MIN and LONG_MAX by INT_MIN and
INT_MAX as pre-defined values in the pool construction. In this
case (Rll v2 in Tab. 3), step 1 of the pool construction succeeds, but
for 21 test drivers, step 2 times out. The remaining 20 test drivers
lead to violations of soundness and precision properties. The root
cause of all these failures is unhandled arithmetic overflows in
various operators. Dropping pre-defined values entirely (Rll v3 in

1 oct1 = oct(−x0 − x5 + 1 >= 0);
2 oct2 = assign(oct1, x2, LONG_MIN);

3 oct3 = oct(x0 + LONG_MAX >= 0);
4 oct4 = meet(oct3, oct2);

5 assert meet(⊤, oct4) == oct4;

Figure 5: Input violating property 17 for Octagons.

Automatically Testing Implementations of Numerical Abstract Domains ASE ’18, September 3–7, 2018, Montpellier, France

1 poly1 = poly(−x5 − x6 + x7 >= LONG_MAX);

2 poly2 = poly(−x4 − x5 − x6 − x7 >= LONG_MIN);

Figure 6: Input entering an infinite loop for Polyhedra.

Tab. 3) allows us to construct the pool in all but four cases. In total,
24 soundness and precision properties fail due to overflow.

5.2 APRON MPQ
MPQ is an APRON variant that uses arbitrary-precision rationals
for its internal representation. For sub-polyhedral domains (i.e.,
Intervals, Octagons, and Polyhedra), this variant is supposed to
be sound and precise [1]. Our experiments partially confirm these
theoretical guarantees: with the same setup as for APRON Double
and Rll, we did not find any (generic) property violations in APRON
MPQ for the three sub-polyhedral domains. However, we uncov-
ered imprecisions for Intervals indirectly, by testing Zonotopes.
Moreover, to further validate our technique, we asked three experts
in abstract interpretation to insert bugs in any of the sub-polyhedral
domains. Our results are presented in the following paragraphs.

Zonotopes. As opposed to sub-polyhedral domains, the structure
of Zonotopes is an incomplete lattice. For this reason, not all the pre-
cision properties from Fig. 3 are expected to hold (e.g., as explained
in Sect. 4.1, the least upper bound may not exist for every pair of
elements). Moreover, join creates new, input-related constants [27]
and thus the operator is by design non-commutative.

Initially, the pool construction step did not succeed for any of
the tests due to a memory bug in the meet operator. After applying
the fix, we detected additional memory exceptions, raised when
creating a high number of input-related constants. Our tests also
revealed imprecisions in the implementation of the equality check,
meet, and project operations. Moreover, we discovered a precision
bug in the partial order. Soundness property 8 uses ⊑ to check if
the result of a join over-approximates its operands, and the bug led
to a violation of this property. The developers concluded that the
root cause is an imprecision in the implementation of the Intervals
domain, when one of the operands of ⊑, ⊔, or ▽ is ⊥, represented
in its canonical form through the empty interval [1,−1]. If ⊥ is
not handled as a special case, [1,−1] ⊔ [−10,−5] = [−10,−1], for
example, instead of [−10,−5]. This imprecision is independent of
the internal representation used for numbers. Our tests for Intervals
could not detect it directly because our properties are generic and do
not check the precision based on the Intervals-specific definitions.
All these issues were fixed by the APRON developers.

Seeded bugs in sub-polyhedral domains. We asked three ab-
stract interpretation researchers, a post-doc and two senior PhD
students with a broad experience in implementing and using vari-
ous types of abstract domains and static analyses, to seed semantic
bugs for our evaluation. Each expert had the task of inserting at
least five soundness or precision bugs (at least one of each type)
in any of the sub-polyhedral domains. We believe that the seeded
bugs are representative of the kind of semantic errors that occur
during the development of abstract domains.

The cumulative results are summarized in Tab. 4. For each do-
main, we show how many bugs were seeded, how many our tech-
nique found, and whether we observed the bugs through violations

Table 4: Results for APRONMPQ with seeded bugs. The last
column shows the number of violated soundness properties,
precision properties, and of crashes and assertion failures.

Domain #Bugs #Properties
Seeded Found Violated

Intervals 5 4 1 / 14 / 0
Octagons 6 5 2 / 15 / 5
Polyhedra 6 5 4 / 10 / 52

of soundness or precision properties, or through crashes and as-
sertion failures in APRON’s internal consistency checks. In total,
we were able to find 14 out of the 17 seeded bugs. In the following
paragraphs, we present two bugs that we detected and explain why
three of the seeded errors could not be found.

A seeded bug in Intervals uses a slightly modified version of
an unsound definition for the widening operator [38]. This defini-
tion uses ≤ instead of > to compare two bounds, which leads to a
violation of soundness property 30. Our tests reveal this problem.

A seeded bug in Octagons removes the call of closure in one
special case of the assignment transformer. As explained in Sect. 3,
we detect this bug by generating an assignment during step 2 of the
pool construction, followed by a meet, which violates four of our
precision properties because the equality check becomes imprecise.

While our approach found the vast majority of the seeded bugs,
there were three it did not detect. (1) One seeded bug makes the Oc-
tagons closure less precise. Detecting this problemwould require ad-
ditional, octagon-specific precision properties for closure [41]. This
can be easily done, but our focus here is on domain-independent
properties. (2) Another seeded bug affects the precision of widen-
ing for Intervals in a way that does not violate the properties from
Fig. 3. Detecting it would again require additional, domain-specific
properties. (3) The last undetected bug changes the assignment
operator for Polyhedra to act like project, making it trivially sound,
but imprecise. This bug can be easily found if the input elements
are polyhedra of dimension 1 (practically intervals). Our default
configuration excludes such elements; adjusting the range of di-
mensions to include the value 1 leads to a violation of property 37,
revealing the imprecision.

5.3 ELINA
To evaluate how effective our technique is on highly optimized
implementations, we applied it to test ELINA. We used the same
configuration as for APRON (C2) on the following abstract domains:

– EP1: Polyhedra with decomposition [46]
– EOD: Octagons with decomposition [45]
– EO: Octagons without decomposition [45]
– EP2: more recent version (including bug fixes) of EP1
– EP3: decomposed Polyhedra with further optimizations [47]

EP1 is the implementation in the artifact [3] from POPL’17 [46],
and the other variants are part of the artifact [4] from POPL’18 [47].
Note that all ELINA domains are based on floating-point numbers
(not on the slower arbitrary-precision rationals). This design deci-
sion may compromise precision to achieve high performance.

Initially, the pool construction for EP1 failed for all the tests
due to corner cases like LONG_MIN

−1 . This step was also not suc-
cessful for EP2 and EP3 if the polyhedra had LONG_MAX coef-
ficients (a similar issue as for APRON Double, see Sect. 5.1). To

ASE ’18, September 3–7, 2018, Montpellier, France A. Bugariu, V. Wüstholz, M. Christakis, and P. Müller

Table 5: Results for different variants of ELINA. The first
value in the third column shows the number of violated
soundness properties, the second of precision properties,
and the last crashes or violated assertions in ELINA’s code.

Variant #Properties CausesTested Violated
EP1 41 4 / 10 / 27 overflow, ▽
EOD 41 0 / 3 / 0 rounding
EO 41 0 / 3 / 0 rounding
EP2 41 0 / 0 / 41 overflow, assertions
EP3 41 4 / 18 / 19 overflow, ▽

find additional errors, we limited the set of pre-defined values
to {INT_MIN ,−1, 0, 1, INT_MAX }. Our results are summarized in
Tab. 5. Manual inspection of the failed tests revealed that most of
them were caused by arithmetic overflows in different operations
(e.g., assign and ⊓). We also found issues due to overly restrictive
assertions in the code as well as an incorrect implementation of
widening for certain cases (e.g., widening with ⊥). We reported
these issues (and others), and they were fixed by the developer.

One of the most interesting bugs we found in EP1 is related to
an inconsistency between the two polyhedral representations. To
improve performance, ELINA uses an optimized implementation
of the Chernikova algorithm [49] for incremental conversion and
applies all the operators on decomposed polyhedra. Such optimiza-
tions make it much more difficult to keep the two representations in
sync. Our pool-construction approach was able to create polyhedra
with inconsistent internal states, by applying sequences of meet
and join operations that use different internal representations. As a
result, the subsequent test for the soundness of assign failed (prop-
erty 35), because the transformer returned ⊥. The same bug was
reported by another ELINA user [50] a few days before we reported
it, which shows that our approach detects bugs that are relevant
for users of numerical libraries. It was fixed in the meantime.

Since narrowing was not available for Octagons through ELINA’s
APRON interface (which we use for testing), we did not include
the corresponding test drivers in this experiment (only the first 41
properties were tested, as shown in Tab. 5). For both variants of
Octagons, like for APRON Double (see Sect. 5.1), properties 17, 22,
and 23 were violated. These imprecisions are caused by rounding
errors when performing closure and, implicitly, in the equality
tests. We reported the issues and they were confirmed. However,
obtaining very precise results with finite-precision representations
is challenging and the developer is still working on a fix.

5.4 Different Configurations
Our technique relies on three main configurable parameters: (1) the
size of the initial pool in step 1 of the input generation (see Sect. 3),
(2) the number of operations applied in step 2, and (3) whether
pre-defined values are used to construct elements and expressions.
We now assess the impact of these parameters on its effectiveness.

For this experiment, we used the three versions of APRON MPQ
with the bugs seeded by the experts and the configurations shown
in Tab. 6. The results are presented in Tab. 7. For each seeded bug,
we report the abstract domain in which it was inserted, the violated
properties, and the execution time until each configuration detects
the violation. As shown in the table, configurations C2, C5, and C6
all find the maximum number of violations, and implicitly all the

Table 6: Different configurations of our technique.
Configuration Initial pool size #Operations Pre-defined values?

C1 2 16 yes
C2 32 16 yes
C3 1024 16 yes
C4 32 0 yes
C5 32 64 yes
C6 32 16 no

bugs, within the time limits defined in Tab. 2. However, C2 does so
significantly faster than C5 and slightly faster than C6.

Initial pool size.When the initial pool includes just ⊤ and ⊥ (as
in C1), no violations are detected for Intervals in comparison to
C2, that is, 4 bugs are missed. On the other hand, a very large
initial pool (C3) increases the execution time without detecting all
violations. We attribute this to the fact that the size of the initial
pool directly influences the number of possible arguments to the
subsequent operations in step 2 and to the test oracle; exploring all
of them takes more time without necessarily being more effective.

Number of operations.Without using step 2 of the pool construc-
tion (C4), some bugs and property violations are missed (see Sect. 3
for an example). However, for our technique to be effective, the
number of operations should not be too large since it increases the
execution time. In Tab. 7, C5 is usually slower than C2 even though
both configurations find the same number of violations.

Pre-defined values. For APRON MPQ, which uses arbitrary pre-
cision rationals, both C2 and C6 find all the violations, C2 being
slightly faster. Pre-defined values are particularly important for
testing abstract-domain implementations based on fixed-precision
numbers such as APRON Double; as our experiments show (see
Sect. 5.1 and Sect. 5.3), these implementations may suffer from
arithmetic overflows and rounding errors.

5.5 Fuzzing and Dynamic Symbolic Execution
In this section, we compare our technique to pure gray-box fuzzing
and DSE. In particular, we use LibFuzzer [6] and KLEE [13], a
state-of-the-art DSE engine, to generate inputs for the test oracles
corresponding to the properties from Fig. 3. For a fair comparison,
we write alternative test drivers that do not create and populate a
pool of abstract elements. Instead, we allow the tools to directly
generate the coefficients and constants of up to 50 constraints per
element. The test oracles are the same as in our test drivers.

Gray-box fuzzing.We ran LibFuzzer (with default options) on the
three APRON MPQ versions with seeded bugs, using the same time
limits as in Tab. 2, and compared the results to our C2 configuration.
LibFuzzer detected 45 out of the 58 property violations that our
approach found. It revealed these violations generally faster than
our approach for Intervals and Polyhedra, but slower for Octagons.
A manual inspection of the generated counterexamples shows that
our technique produces significantly simpler and more readable
test inputs, which was very useful in debugging the detected issues.

Tab. 8 provides additional details for the bugs seeded by Expert 3.
The last two columns show the time it takes to detect a property
violation for our technique (with C2) and for LibFuzzer, respectively.
LibFuzzer missed one of the Octagon bugs. Moreover, LibFuzzer’s
results for Polyhedra suggest that the implementation of join is

Automatically Testing Implementations of Numerical Abstract Domains ASE ’18, September 3–7, 2018, Montpellier, France

Table 7: Impact of different configurations on the effec-
tiveness of our technique. The last six columns show the
time needed to find a violation for each configuration from
Tab. 6. We grouped the violations by the seeded bugs they
reveal (dashed lines) and by the expert who seeded the bugs
(solid lines). We excluded two seeded bugs in Polyhedra that
caused assertions failures in APRON for all configurations,
and thereby masked the other bugs seeded by Expert 2.

Domain Violated Execution time (s)
property C1 C2 C3 C4 C5 C6

Intervals 15 ND 0.3 1.36 0.1 1.48 0.38
Intervals 17 ND 0.05 1.78 0.05 0.05 0.05
Intervals 18 ND 0.51 1.82 0.53 0.6 0.53
Intervals 19 ND 0.44 1.89 0.65 0.6 0.52
Intervals 23 ND 2.6 1.34 0.93 3.06 0.99
Intervals 24 ND 1.94 ND ND 17.29 2.49
Intervals 25 ND 0.33 1.34 0.1 1.71 0.4
Intervals 30 ND 0.36 1.25 0.13 0.58 0.52
Octagons 6 0.04 0.05 0.49 0.1 0.06 0.06
Octagons 9 0.34 4.73 ND 0.18 30.7 3.97
Octagons 10 0.95 3.05 ND 0.13 2.81 5.12
Octagons 11 6.25 8.35 ND 0.5 294.26 2.59
Octagons 13 0.45 3.23 ND 0.22 108.69 7.67
Intervals 30 ND 0.72 1.24 0.27 2.1 0.45
Octagons 15 0.5 crash 109.56 crash crash 3.5
Octagons 16 0.06 0.12 2.47 0.06 0.13 0.05
Octagons 17 0.72 2.72 ND ND crash crash
Octagons 18 crash crash 23.2 crash crash crash
Octagons 19 crash crash ND crash crash crash
Octagons 20 0.8 crash 771.25 crash crash crash
Octagons 21 crash 1.09 7.49 crash 1.41 0.9
Octagons 22 0.72 crash ND crash crash crash
Octagons 23 0.73 crash 27.81 crash crash 3.65
Octagons 24 crash crash ND crash crash crash
Octagons 25 0.56 0.87 4.39 crash crash 1.03
Octagons 28 crash crash ND crash crash crash
Octagons 42 0.93 5.17 112.34 crash crash 1.5
Octagons 38 0.05 0.07 2.04 0.05 0.07 0.14
Polyhedra 6 0.05 0.12 63.4 0.11 0.23 0.18
Polyhedra 9 1.22 30.03 ND 0.21 44.47 312.41
Polyhedra 10 0.65 2.05 ND 0.35 295.41 42.94
Polyhedra 11 54.56 419.51 ND 3.06 >4h 1487.56
Polyhedra 13 1.18 106.69 ND 0.44 483.82 86.3
Polyhedra 34 5.46 45.58 ND 0.62 33.76 85.97
Polyhedra 36 0.07 0.14 60.4 0.12 0.22 0.17
Polyhedra 37 0.48 13.0 ND 0.16 4.87 217.27
Polyhedra 38 0.46 41.75 ND 0.73 5.42 449.95
Intervals 5 ND 2.09 15.32 9.34 2.39 787
Intervals 13 ND 0.86 3.51 0.47 4.94 1.0
Intervals 23 ND 0.62 2.19 0.51 1.49 1.17
Intervals 28 ND 269 3.59 0.12 1.0 2.02
Intervals 34 ND 12.54 70.86 1.23 11.34 12.21
Intervals 39 ND 4.37 25.21 1.9 5.99 24.99
Octagons 9 0.67 0.83 3.53 0.11 0.27 0.4
Octagons 10 0.45 0.23 2.48 0.11 0.88 0.87
Octagons 13 0.65 0.55 24.58 0.32 28.67 23.94
Octagons 17 4.32 23.61 ND ND 117.56 16.37
Octagons 22 9.78 24.22 ND ND 17.3 11.25
Octagons 23 4.26 9.3 ND ND 15.08 11.05
Octagons 25 3.78 11.09 ND ND 81.92 9.17
Polyhedra 7 0.07 inc inc 2.02 inc inc
Polyhedra 8 0.07 0.18 64.47 0.16 0.13 inc
Polyhedra 9 0.09 0.23 66.55 0.17 0.13 inc
Polyhedra 11 inc inc inc 1.0 inc inc
Polyhedra 12 0.08 0.19 65.96 0.29 0.18 0.2
Polyhedra 13 0.08 0.18 64.67 0.19 0.22 0.2
Polyhedra 25 0.08 0.2 61.76 0.19 0.14 0.19
Polyhedra 27 2.99 0.21 65.71 0.26 0.15 inc

#Violations found 43 58 37 52 58 58
#Bugs found 8 12 11 11 12 12

crash: crash due to the seeded bugs, ND: the violation was not detected
inc: inconsistent representations (assertion failure in APRON’s code)

Table 8: Comparison of our technique with fuzzing for the
bugs seeded by Expert 3. We grouped the violations by the
seeded bugs they reveal (dashed lines).

Domain Violated Execution time (s)
property Our work Fuzzing

Intervals 5 2.09 0.39
Intervals 13 0.86 0.69
Intervals 23 0.62 0.49
Intervals 28 0.27 0.71
Intervals 34 12.54 0.39
Intervals 39 4.37 31.07
Octagons 9 0.83 7.49
Octagons 10 0.23 8.01
Octagons 13 0.55 15.16
Octagons 17 23.61 ND
Octagons 22 24.22 ND
Octagons 23 9.3 ND
Octagons 24 11.09 ND
Polyhedra 7 inc ND
Polyhedra 8 0.18 ND
Polyhedra 9 0.23 ND
Polyhedra 11 inc ND
Polyhedra 12 0.19 0.07
Polyhedra 13 0.18 ND
Polyhedra 25 0.2 ND
Polyhedra 27 0.21 ND

ND: the violation was not detected, inc: inconsistent
representations (assertion failure in APRON’s code)

imprecise since only property 12 is violated. In contrast, our tech-
nique revealed that the expert seeded a more serious soundness
bug (properties 7, 8, and 9 are also violated).

Dynamic symbolic execution. Since KLEE does not try to ex-
plore all execution paths in external libraries and APRON makes
heavy use of libraries, we performed the comparison on the EOD
and EO ELINA domains, using KLEE’s default options. Our alter-
native test drivers use ELINA’s functions directly, not its APRON
interface, to avoid external library calls. With the latest version
of KLEE (1.4.0), all but 1 test throw an error for both tested do-
mains, because KLEE is not able to model malloc instructions with
symbolic sizes [5].

To overcome this limitation, we extended KLEE with an option
for specifying the upper bound for the symbolic size; we used 8192
in our experiments. For each tested domain, our technique detected
3 violated properties (see Tab. 5), but KLEE was not able to detect
any, even with a time limit of 17’700s (the 25-fold of the time limit
used for our technique). We believe this is due to the fact that ELINA
heavily relies on floating-point arithmetic, which KLEE does not
handle very well.

5.6 Threats to Validity
We identified two threats to the validity of our experiments.

Test generation tool. Our comparisons to alternative approaches
focus on one fuzzer and one DSE tool. Since we chose mature,
state-of-the-art tools, we believe that our results are representative.
Similarly, we did not use alternative gray-box fuzzers when evalu-
ating our own approach. Since most fuzzers make no assumptions
about the code under test, we do not expect to see significantly
different results for other fuzzers.

ASE ’18, September 3–7, 2018, Montpellier, France A. Bugariu, V. Wüstholz, M. Christakis, and P. Müller

Random initialization.Our pool initialization step chooses some
of the coefficients and constants randomly. To ensure that our
results are deterministic, all test drivers use the same, pre-defined
random seed.

6 RELATEDWORK
Our approach is the first to systematically test a wide range of
soundness, precision, and convergence properties on complex ab-
stract domains. It combines several existing test case generation
techniques in a novel way. On the one hand, we derive executable
test oracles [9] to check high-level, mathematical properties of
abstract-domain implementations. On the other hand, we incorpo-
rate ideas from boundary and random testing (step 1 of the pool
population) and from feedback-directed random testing [42] (step 2)
to obtain inputs for the test oracles. A key difference with the latter
is that, in our case, the fuzzer controls which elements are added
to the pool, by providing the operations and their arguments.

Testing static analyzers with random programs. One way to
test static analyzers is by randomly generating input programs [24].
This approach is particularly effective in testing the robustness of
analyzers, that is, for detecting which input programs make the
analyzers crash. To also test soundness properties, Cuoq et al. in-
strument the code of the analyzer under test with assertions about
inferred values or relations between program variables. These asser-
tions are then checked against concrete executions. In contrast, our
technique generates input data systematically, and does not require
any modifications to the implementation of the tested analyzers.

Analysis testing and delta debugging. Similarly to Cuoq et al.’s
work, Andreasen et al. [8] compare concrete executions to abstract
domain elements to detect soundness and precision problems. They
use delta debugging to reduce the size of the input programs in
order to report the errors concisely. In contrast, we propose a tech-
nique for automatically generating the input domain elements; our
approach starts with simple elements and applies a small number
of operations, generating small counterexamples by construction.

Systematically testing lattice properties.Midtgaard andMøller
[40] focus on quickchecking [18] basic lattice properties of abstract
interpreters. Our technique was inspired by their work; it extends
the set of tested properties and, as our evaluation shows, is effective
on widely-used and highly-optimized abstract domain implementa-
tions. A comprehensive experimental comparison with their tool
was not possible, as the authors provide constructors and helper
functions for generating ordered pairs of elements only for Inter-
vals, but not for the complex numerical domains that we consider.
Without them, many of the properties cannot be tested, as the ran-
domly generated inputs very likely do not satisfy the preconditions.
For this reason, we expect that their technique cannot significantly
outperform gray-box fuzzing, which we showed to be less effective
than our approach (see Tab. 8). We solve the problem of generating
ordered inputs by applying domain operations to the existing pool
elements (e.g., the result of a join over-approximates its operands).

Formally verified static analyzers. Interactive theorem provers
such as Coq [2] have been used to verify the soundness of the de-
sign of static analyses (e.g., in the context of type systems [25, 44]).
However, the proofs do not typically provide any guarantees about

the actual implementation of the analyses, and, thus, could still ben-
efit from automated testing techniques like ours. The Verasco [32]
project extracts executable code from verified Coq formalizations of
several abstract domains. This approach produces implementations
that are correct by construction, but is not yet practical for complex,
highly-optimized implementations. Recent work by Madsen and
Lhoták [39] uses symbolic evaluation (based on symbolic execu-
tions and SMT solvers) to verify the correctness, i.e., safety and
soundness, of abstract-domain implementations. If the problem is
undecidable, it relies on a quickchecking approach inspired by [40].
Their evaluation does not consider complex numerical domains.

Unsoundness in static analyzers. Even for analyzers that are
unsound by design [10, 15–17, 37], our technique is useful to detect
unintentional sources of unsoundness and imprecision (e.g., caused
by implementation errors).

Testing compilers and program analyzers. Abstract domains
are one of many components that are used in modern compilers
and program analyzers. Besides efforts in proving properties about
such components (e.g., CompCert [36] and Verasco [32]), there is a
significant body of work on using testing techniques to detect issues
in compilers [34, 35, 48, 51], and recently, in DSE engines [33].

7 CONCLUSION
We have presented an automated testing technique for detecting
soundness, precision, and convergence errors in abstract-domain
implementations, which are crucial components of many static
analyzers. We have evaluated our approach on several complex,
real-world abstract domains from two widely-used libraries for
numerical analysis and demonstrated its effectiveness in finding
both seeded and previously unknown errors.

Even though our evaluation focuses on numerical abstract do-
mains, we believe that the high-level ideas of our technique also
apply to other domains such as string or heap domains. Such do-
mains require different techniques to construct domain elements as
well as suitable parameters for assignments and conditionals. More-
over, one needs to assess whether fuzzers can effectively explore
the search space of non-numerical domain implementations. We
leave these generalizations as future work.

There are several lessons to be learned from this work. First, an
automated testing technique offers a pragmatic and effective solu-
tion for uncovering issues in static analyzers that would be difficult
to find using manual testing. Second, off-the-shelf testing tools are
less effective for complex, highly-optimized domain implementa-
tions than a well-designed combination of techniques. We believe
that these observations carry over to other application areas, such
as machine-learning frameworks; exploring those is future work.

ACKNOWLEDGMENTS
We would like to thank the developers of APRON, Khalil Ghorbal
and Antoine Miné, and of ELINA, Gagandeep Singh, for their help
and support. We are also grateful to Jérôme Dohrau, Gagandeep
Singh, and Caterina Urban for seeding bugs for our evaluation, and
to our anonymous reviewers for their helpful comments. Maria
Christakis’s work was supported in part by a Facebook Faculty
Research Award.

Automatically Testing Implementations of Numerical Abstract Domains ASE ’18, September 3–7, 2018, Montpellier, France

REFERENCES
[1] [n. d.]. The APRON Library Documentation. http://apron.cri.ensmp.fr/library/0.

9.10/apron.pdf.
[2] [n. d.]. The Coq Proof Assistant. https://coq.inria.fr.
[3] [n. d.]. ELINA Artifact (POPL 2017). https://www.sri.inf.ethz.ch/optpoly.php.
[4] [n. d.]. ELINAArtifact (POPL 2018). https://www.sri.inf.ethz.ch/popl18-paper251.

php.
[5] [n. d.]. KLEE Tutorial. http://klee.github.io/tutorials/testing-regex/.
[6] [n. d.]. LibFuzzer—A Library for Coverage-Guided Fuzz Testing. https://llvm.

org/docs/LibFuzzer.html.
[7] [n. d.]. Technical “Whitepaper” for AFL. http://lcamtuf.coredump.cx/afl/

technical_details.txt.
[8] Esben Sparre Andreasen, Anders Møller, and Benjamin Barslev Nielsen. 2017. Sys-

tematic Approaches for Increasing Soundness and Precision of Static Analyzers.
In SOAP. ACM, 31–36.

[9] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015.
The Oracle Problem in Software Testing: A Survey. TSE 41, 5 (2015), 507–525.

[10] Dirk Beyer, Thomas A. Henzinger, M. Erkan Keremoglu, and Philipp Wendler.
2012. Conditional Model Checking: A Technique to Pass Information between
Verifiers. In FSE. ACM, 57–67.

[11] Dirk Beyer and M. Erkan Keremoglu. 2011. CPAchecker: A Tool for Configurable
Software Verification. In CAV (LNCS), Vol. 6806. Springer, 184–190.

[12] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. 2003. A Static
Analyzer for Large Safety-critical Software. In PLDI. ACM, 196–207.

[13] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In OSDI. USENIX, 209–224.

[14] Cristian Cadar and Dawson R. Engler. 2005. Execution Generated Test Cases:
How to Make Systems Code Crash Itself. In SPIN (LNCS), Vol. 3639. Springer,
2–23.

[15] Maria Christakis, Peter Müller, and Valentin Wüstholz. 2012. Collaborative
Verification and Testing with Explicit Assumptions. In FM (LNCS), Vol. 7436.
Springer, 132–146.

[16] Maria Christakis, Peter Müller, and Valentin Wüstholz. 2015. An Experimental
Evaluation of Deliberate Unsoundness in a Static Program Analyzer. In VMCAI
(LNCS), Vol. 8931. Springer, 336–354.

[17] Maria Christakis and Valentin Wüstholz. 2016. Bounded Abstract Interpretation.
In SAS (LNCS), Vol. 9837. Springer, 105–125.

[18] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In ICFP. ACM, 268–279.

[19] Patrick Cousot and Radhia Cousot. 1976. Static Determination of Dynamic
Properties of Programs. In ISOP. Dunod, 106–130.

[20] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In POPL. ACM, 238–252.

[21] Patrick Cousot and Radhia Cousot. 1979. Systematic Design of Program Analysis
Frameworks. In POPL. ACM, 269–282.

[22] Patrick Cousot and Radhia Cousot. 1992. Comparing the Galois Connection and
Widening/Narrowing Approaches to Abstract Interpretation. In PLILP (LNCS),
Vol. 631. Springer, 269–295.

[23] Patrick Cousot and Nicolas Halbwachs. 1978. Automatic Discovery of Linear
Restraints Among Variables of a Program. In POPL. ACM, 84–96.

[24] Pascal Cuoq, BenjaminMonate, Anne Pacalet, Virgile Prevosto, John Regehr, Boris
Yakobowski, and Xuejun Yang. 2012. Testing Static Analyzers with Randomly
Generated Programs. In NFM (LNCS), Vol. 7226. Springer, 120–125.

[25] Catherine Dubois. 2000. Proving ML Type Soundness Within Coq. In TPHOLs
(LNCS), Vol. 1869. Springer, 126–144.

[26] Manuel Fähndrich and Francesco Logozzo. 2010. Static Contract Checking with
Abstract Interpretation. In FoVeOOS (LNCS), Vol. 6528. Springer, 10–30.

[27] Khalil Ghorbal, Eric Goubault, and Sylvie Putot. 2009. The Zonotope Abstract
Domain Taylor1+. In CAV (LNCS), Vol. 5643. Springer, 627–633.

[28] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-
mated Random Testing. In PLDI. ACM, 213–223.

[29] Eric Goubault and Sylvie Putot. 2006. Static Analysis of Numerical Algorithms.
In SAS (LNCS), Vol. 4134. Springer, 18–34.

[30] Julien Henry, David Monniaux, and Matthieu Moy. 2012. PAGAI: A Path Sensitive
Static Analyser. Electr. Notes Theor. Comput. Sci. 289 (2012), 15–25.

[31] Bertrand Jeannet and Antoine Miné. 2009. Apron: A Library of Numerical
Abstract Domains for Static Analysis. In CAV (LNCS), Vol. 5643. Springer, 661–
667.

[32] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David
Pichardie. 2015. A Formally-Verified C Static Analyzer. In POPL. ACM, 247–259.

[33] Timotej Kapus and Cristian Cadar. 2017. Automatic testing of symbolic execution
engines via program generation and differential testing. In ASE. IEEE Computer
Society, 590–600.

[34] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equiv-
alence modulo inputs. In PLDI. ACM, 216–226.

[35] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding deep compiler bugs via
guided stochastic program mutation. In OOPSLA. ACM, 386–399.

[36] Xavier Leroy. 2009. Formal verification of a realistic compiler. CACM 52, 7 (2009),
107–115.

[37] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J. Nelson
Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders Møller,
and Dimitrios Vardoulakis. 2015. In Defense of Soundiness: A Manifesto. CACM
58 (2015), 44–46. Issue 2.

[38] Francesco Logozzo and Manuel Fähndrich. 2010. Pentagons: A weakly relational
abstract domain for the efficient validation of array accesses. Sci. Comput. Program.
75, 9 (2010), 796–807.

[39] Magnus Madsen and Ondrej Lhoták. 2018. Safe and Sound Program Analysis
with FLIX. In ISSTA. ACM. To appear.

[40] JanMidtgaard andAndersMøller. 2017. QuickChecking Static Analysis Properties.
Softw. Test. Verif. Reliab. 27, 6 (2017).

[41] Antoine Miné. 2006. The Octagon Abstract Domain. Higher Order Symbol.
Comput. 19, 1 (2006), 31–100.

[42] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-Directed Random Test Generation. In ICSE. IEEE Computer Society,
75–84.

[43] Thomas W. Reps, Shmuel Sagiv, and Greta Yorsh. 2004. Symbolic Implementation
of the Best Transformer. In VMCAI (LNCS), Vol. 2937. Springer, 252–266.

[44] Zhong Shao, Bratin Saha, Valery Trifonov, and Nikolaos Papaspyrou. 2002. A
type system for certified binaries. In POPL. ACM, 217–232.

[45] Gagandeep Singh, Markus Püschel, and Martin Vechev. 2015. Making Numerical
Program Analysis Fast. In PLDI. ACM, 303–313.

[46] Gagandeep Singh, Markus Püschel, and Martin Vechev. 2017. Fast Polyhedra
Abstract Domain. In POPL. ACM, 46–59.

[47] Gagandeep Singh, Markus Püschel, and Martin Vechev. 2018. A Practical Con-
struction for Decomposing Numerical Abstract Domains. PACMPL 2, POPL
(2018), 55:1–55:28.

[48] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding and analyzing compiler
warning defects. In ICSE. ACM, 203–213.

[49] H. Le Verge. 1992. A note on Chernikova’s Algorithm. Technical Report RR-1662.
INRIA.

[50] Shiyi Wei, Piotr Mardziel, Andrew Ruef, Jeffrey S. Foster, and Michael Hicks.
2018. Evaluating Design Tradeoffs in Numeric Static Analysis for Java. In ESOP
(LNCS), Vol. 10801. Springer, 653–682.

[51] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-
standing bugs in C compilers. In PLDI. ACM, 283–294.

http://apron.cri.ensmp.fr/library/0.9.10/apron.pdf
http://apron.cri.ensmp.fr/library/0.9.10/apron.pdf
https://coq.inria.fr
https://www.sri.inf.ethz.ch/optpoly.php
https://www.sri.inf.ethz.ch/popl18-paper251.php
https://www.sri.inf.ethz.ch/popl18-paper251.php
http://klee.github.io/tutorials/testing-regex/
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

	Abstract
	1 Introduction
	2 Background
	3 Overview
	3.1 Test Oracles
	3.2 Input Data
	3.3 Test Drivers and Exploration

	4 Technical Solution
	4.1 Test Oracles
	4.2 Input Data

	5 Experimental Evaluation
	5.1 APRON Double and Rll
	5.2 APRON MPQ
	5.3 ELINA
	5.4 Different Configurations
	5.5 Fuzzing and Dynamic Symbolic Execution
	5.6 Threats to Validity

	6 Related Work
	7 Conclusion
	References

